C-1 BSAI Halibut Abundance Based Management (ABM)

Council presentation Homer, AK October 3, 2019 Inter-Agency Working Group

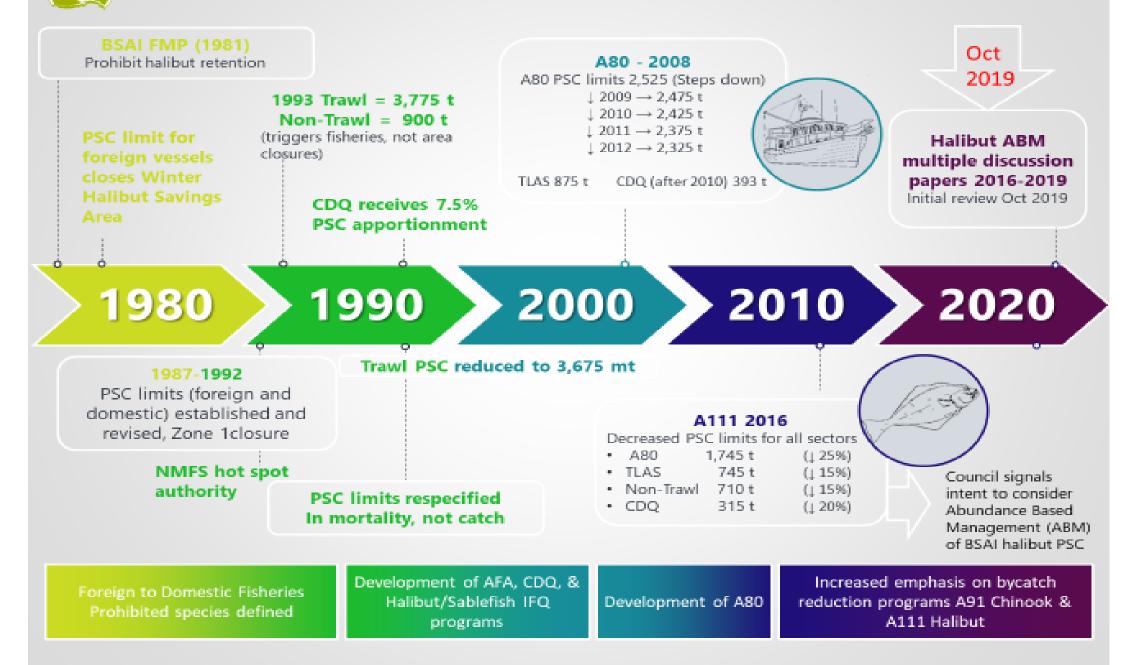
- Council Staff
- NOAA Alaska Fisheries Science Center
- International Pacific Halibut Commission
- NMFS Alaska Regional Office

Document structure

- 1. Introduction/Purpose and Need
- 2. Description of Alternatives
- 3. Groundfish stock status and fishery description
- 4. Halibut stock status and fishery description
- 5. Methodology
- 6. Impacts Analysis for Groundfish and Halibut
- 7. Other resource categories
- 8. Preparers
- 9. References
- 10. Appendices including SIA, other indices previously considered, Model validation, model results by alternative, model sensitivity

Key discussions and decision points for the Council meeting

- Review the suite of Alternatives and provide any revisions as desirable. Key considerations include:
 - Do these Alternatives as currently constructed meet the intent of the Council's action?
 - Could complexity and redundancy be reduced and still address the Council's intent?
- Review the halibut simulation model, including analytical assumptions and application for purposes of informing the Council's policy decisions for this analysis.
- Review the suite of draft performance metrics and revise as needed. Revised performance metrics may better characterize results across alternatives to indicate where they address conflicting Council objectives.


Purpose and Need

Objectives derived from purpose and need page 24 to guide alternative management actions

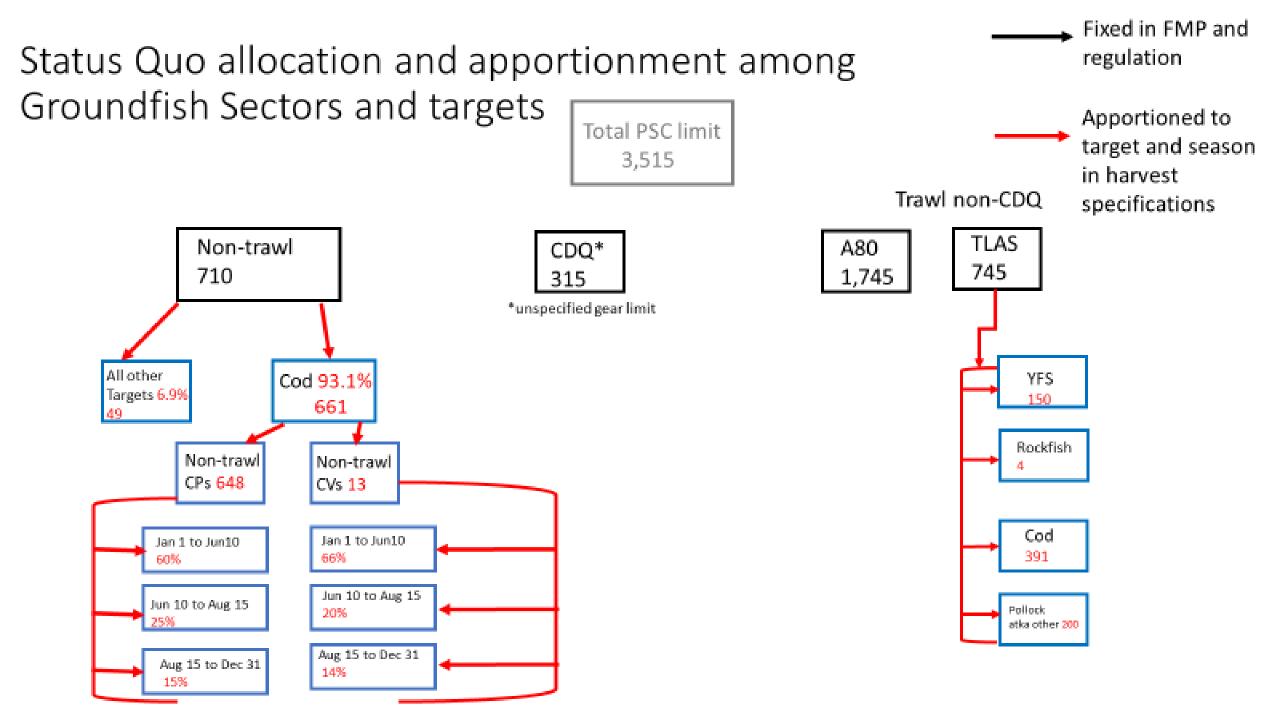
- Halibut PSC limits should be indexed to halibut abundance
- Halibut spawning stock biomass should be protected especially at lower levels of abundance
- There should be flexibility provided to avoid unnecessarily constraining the groundfish fishery particularly when halibut abundance is high
- Provide for directed halibut fishing operations in the Bering Sea.
- Provide for some stability in PSC limits on an inter-annual basis.

TIMELINE OF MANAGEMENT MEASURES TO ADDRESS BSAI HALIBUT PSC 1981-PRESENT

Focus of discussion paper reviews

Indices

Control rules


Alternative

Performance metrics

Alternatives

Alternative 1: Status Quo Halibut PSC Limits for Groundfish sectors

	PSC limit
Amendment 80 cooperatives	1,745 t
BSAI trawl limited access fisheries	745 t
Non-trawl fisheries	710 t
CDQ fisheries	315 t
TOTAL	3,515 t

Indices to make Pacific halibut PSC based on abundance...

for Alternatives 2 and 3 Estimated abundance (numbers of Pacific halibut) by length category, total biomass (pounds) as estimated by the NMFS Bering Sea Trawl survey data, 1982-2018

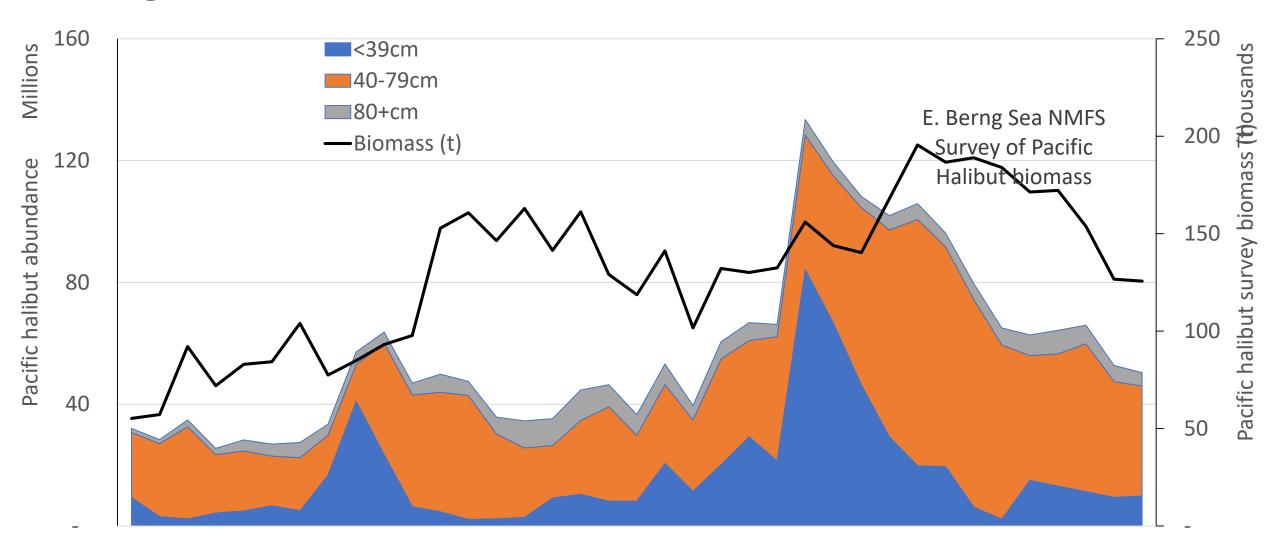
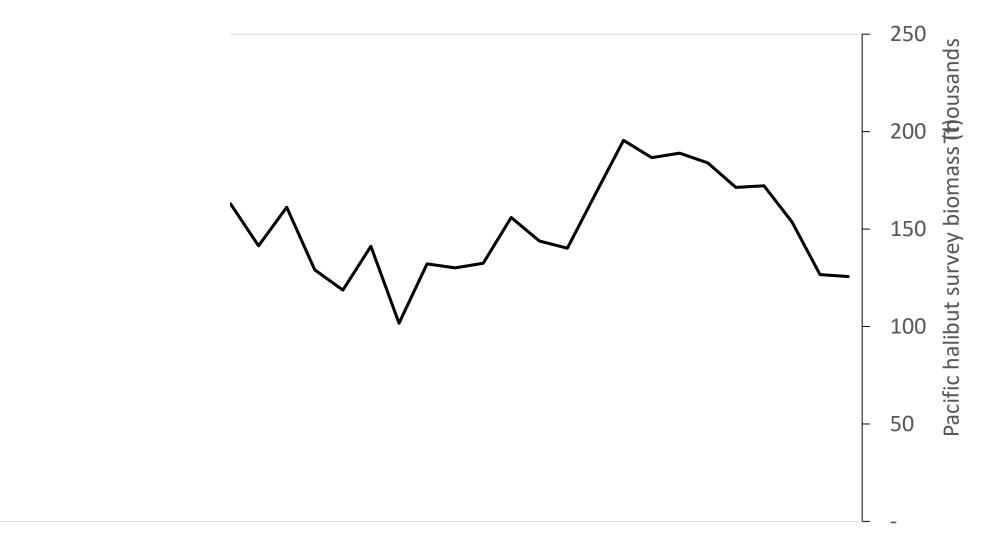
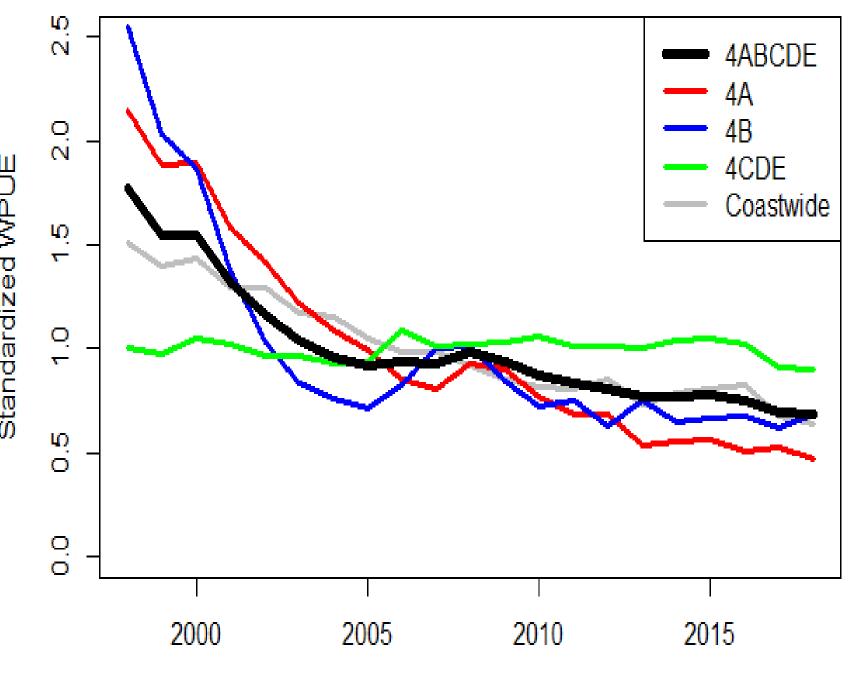



Fig 1-5


1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Actual EBS trawl survey index used

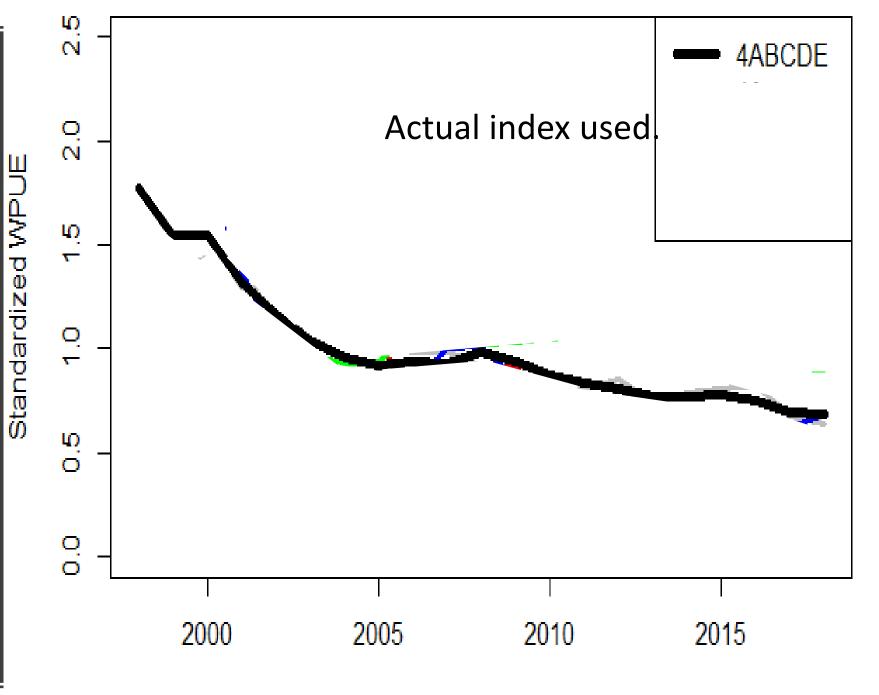
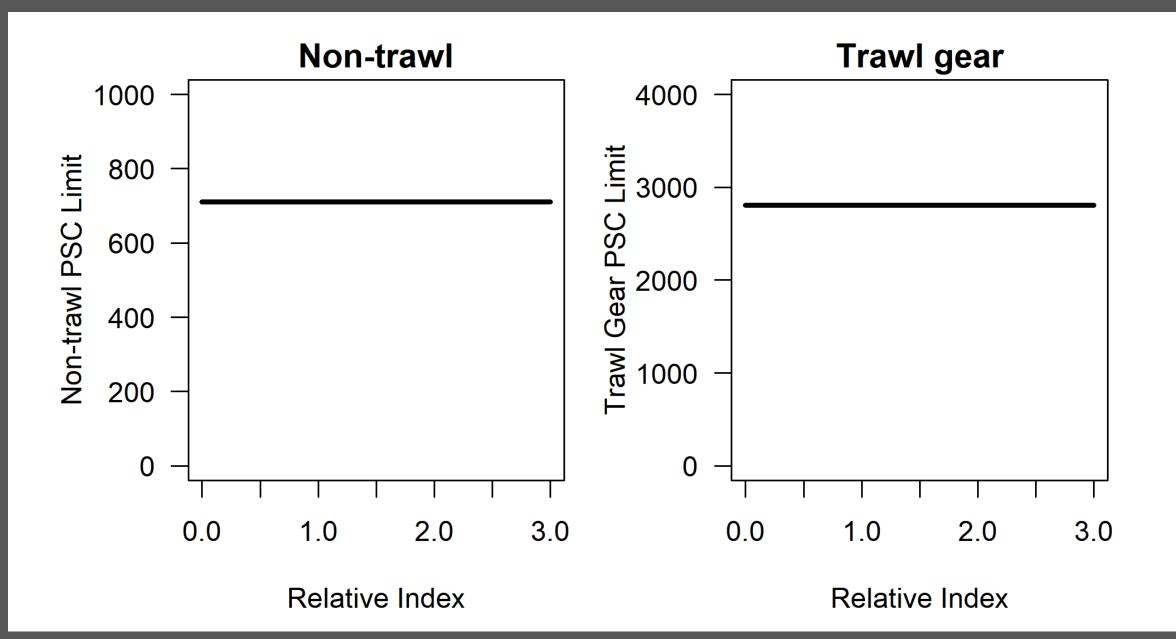

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

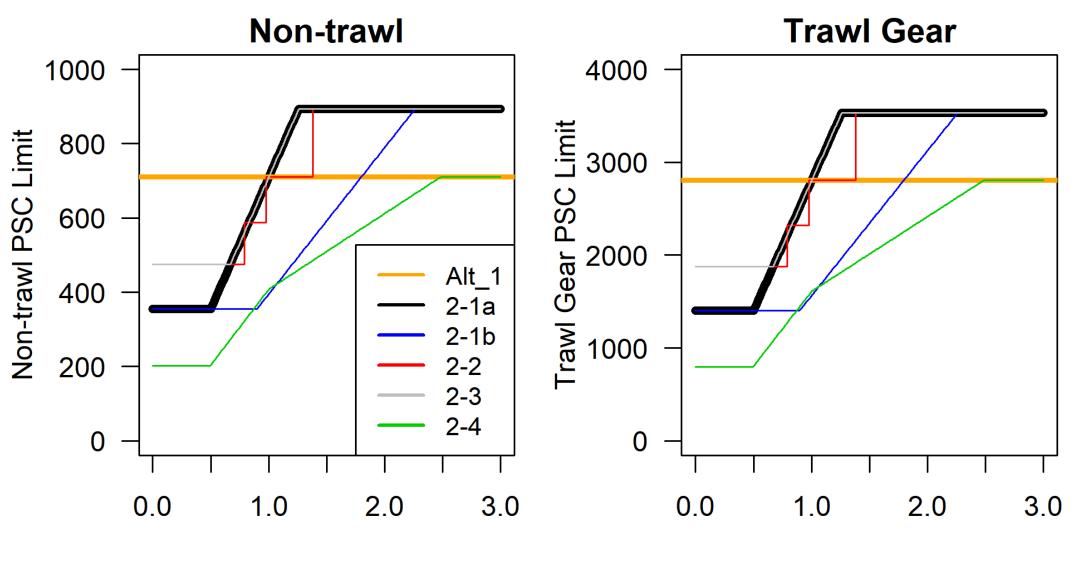
Figure 1-7 IPHC Figure 1-7 IPHC Setline survey WPUE all Pacific halibut (Total) for IPHC Regulatory Areas in Area 4 standardized to the mean of the time mean of the time series (1998-2017) for each Area

Year

Figure 1-7 IPHC Figure 1-7 IPHC Setline survey WPUE all Pacific halibut (Total) for IPHC Regulatory Areas in Area 4 standardized to the mean of the time mean of the time series (1998-2017) for each Area

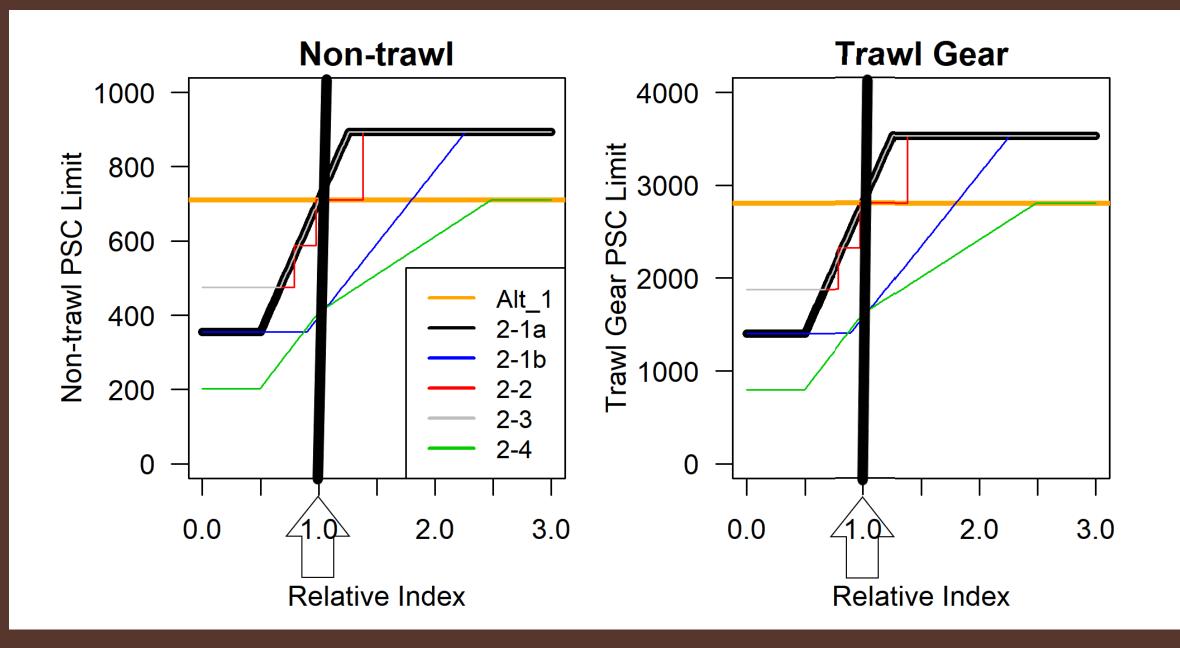
Year

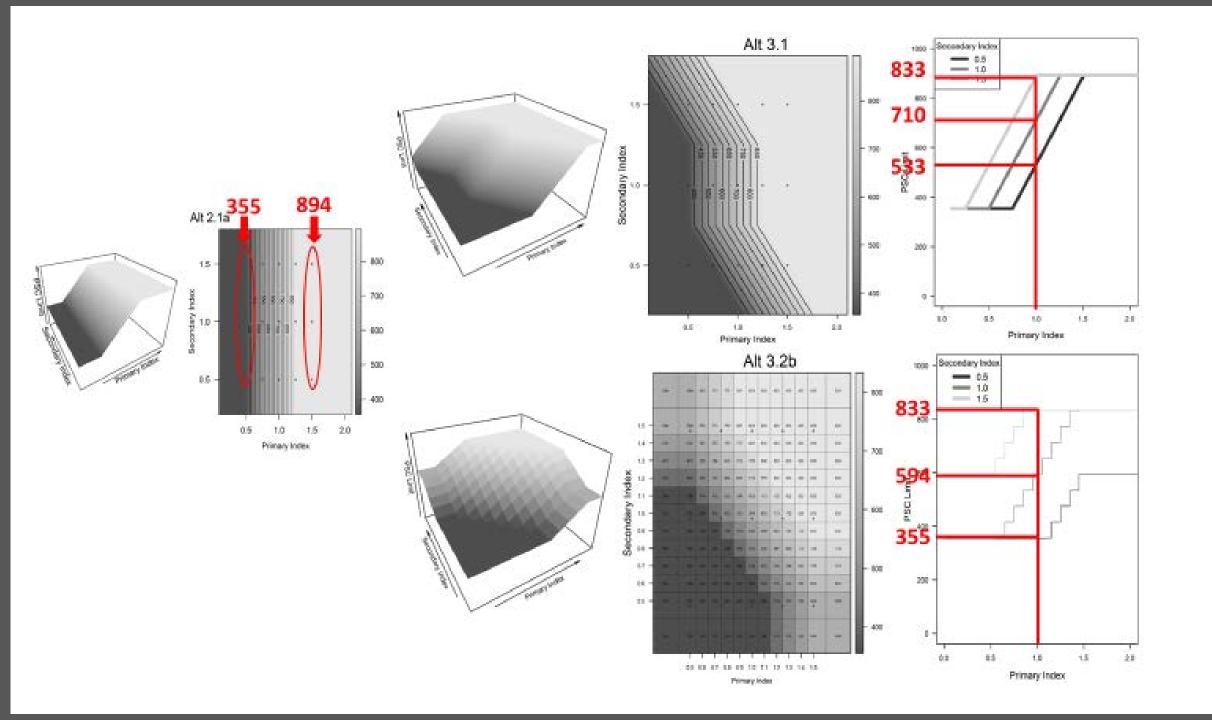

EBS Bottom Trawl Survey (Observed is blue)



Alternatives 2 and 3

Alternative	Primary index	Secondary index	Standardization
2	Trawl or Setline	none	2018 (default); 2 year average
3	Trawl or Setline	Trawl or Setline	Primary: 2018 (default); 2 year average
			Secondary: mean or 2018


Element	Description	Range	Optional?
1	Starting Point	1,958-3,515 t	No
2	Ceiling	3,515-4,426 t	No
3	Floor	1,000-2,354 t	No
4	Breakpoint	Breakpoint occurs when index value	Yes For Alt 2
		is greater than or less than one of the 2 values below:	No for Alt 3
			(unless Element 7
		25% average of index	selected)
		or	
		average value of index	
5	Response	1:1	No
	>1:1		(unless Element 7
		<1:1	selected)
ſ	Constantiat		Ma a
6	Constraint	5-25%	Yes
7	Look up Table	Up to 12 breakpoints; standard to mean or 2018	Yes



Relative Index

Relative Index

Subalternatives analyzed (Table 2-4)

- Process for selection of Alternatives 2 and 3:
 - Base Case 2-1, 3-1: same Elements and options selected except for breakpoints (none in 2-1)
 - Change one element:
 - 2-1a, 2-1b; 3-1a, 3-1b, 3-1c, 3-1d
 - Stakeholder submissions:

2-2, 2-3, 2-4; 3-2a, 3-3a

 Contrasting alternatives for one Element:

3-2b, 3-3b

Table 2-4

			T	Elements						I
		Indices	s used	1	2	3	4	5	6	7
Alternative	Source	Primary	Secondary	Starting point	Ceiling	Floor	Break points	Responsiveness	Constraint	Туре
1	Status quo	NA	NA	3,515			 1			/
2-1	WG	By gear	NA	3,515	4,426	1,758	none	1:1	15% max	Continuous
2-1.a	WG	By gear	NA	3,515	4,426	1,758	none	1:1	none	Continuous
2-1.b	SSC	By gear	NA	1,958	4,426	1,758	none	1:1	15% max	Continuous
2-2	Stakeholder	By gear	NA	3,515	4,426	2,354	specified	Stairsteps	2 yr avg	Continuous
2-3	Stakeholder	By gear	NA	3,515	4,426	2,354	none	1:1	15% max	Continuous
2-4	Stakeholder	By gear	NA	2,018	3,515	1,000	Start	1:1 (low) 0.5:1 (high)	15% max	Continuous
3-1	WG	By gear	Other (mean)	3,515	4,426	1,758	±25%	1:1	15% max	Continuous
3-1.a	WG	By gear	Other (mean)	3,515	4,426	1,758	±25%	1:1	none	Continuous
3-1.b	WG	By gear	Other (mean)	3,515	4,426	1,758	±25%	2 nd Index 0.5:1 (low),1.5:1 (high)	15% max	Continuous
3-1.c	WG	By gear	Other (mean)	3,515	4,426	1,758	±25%	1:1	15% max	Discrete
<u>3-1.d</u>	SSC	By gear	Other (mean)	1,958	4,426	1,758	±25%	1:1	15% max	Continuous
3-2.a	Stakeholder	Gear (mean)	Other (mean)	2,941	4,124	1,758	none	Interpolated	15% max	Discrete
<u>3-2.b</u>	WG	Gear (mean)	Other (mean)	2,941	4,124	1,758	none	1:1	15% max	Discrete
3-3a	Stakeholder	Setline	Trawl (mean)	1,958	3,515	1,000	S.P	Secondary 0.35:1	20% max	Continuous
3-3a_update	Stakeholder	Setline	Trawl (2018)	1,958	3,515	1,000	S.P	Secondary 0.35:1	20% max	Continuous
3-3b	WG	Trawl	Setline (mean)	1,958	3,515	1,000	S.P	Secondary 0.35:1	20% max	Continuous

Alternatives analyzed and stakeholder intent

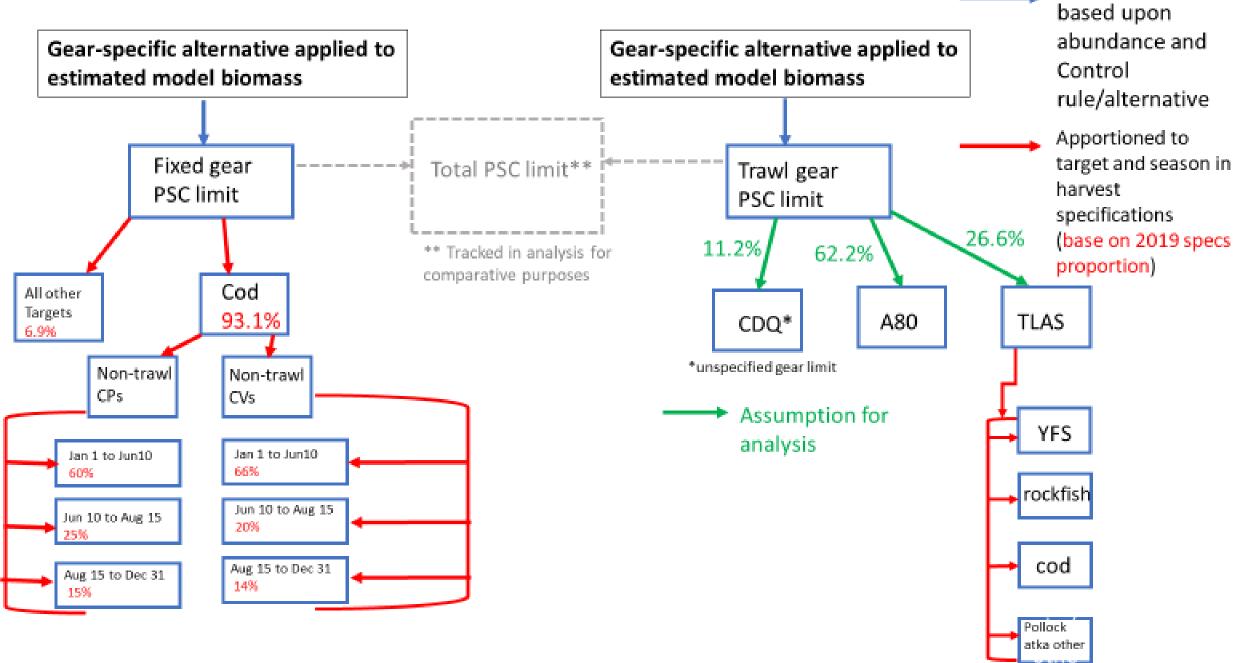
- Proposals documented before February stakeholder meeting
- A few differences between proposal and alternative
 - May be a clear difference or a necessary interpretation

- Inconsistencies with the motion are not highlighted here
 - Retention of the intent of the proposal was attempted

	February 2019 Motion	A80 Proposal	Alternative 2-2	UCB Proposal	Alternative 2-4	FLC Proposal	Alternative 3.2a
			Trawl		Trawl	Non-trawl PSC	Trawl
Applies to		A80 PSC Limit	Non-trawl	Total PSC Limit	Non-trawl	limit	Non-trawl
	1998-2018						
	Primary standardized to						
	recent year				Trawl survey for		
	1. Secondary to recent year	Trawl survey	Trawl survey		trawl		
	2. Primary averaged over	averaged over	averaged over	Trawl survey for	Setline for non-		
Indices	recent 2 yrs	recent 2 years	recent 2 years	trawl	trawl	Both	Both
	1. No action						
	2. Single index						
	1: EBS bottom trawl survey.						
	2: IPHC setline survey						
	3. Primary & secondary						
	1: trawl then setline.						
Alternative	2: setline then trawl	Alt 2, Option 1	Alternative 2	Alt 2, Option 1	Alternative 2	Alternative 3	Alternative 3
	1. 2016 PSC limit (3,515 t)		Trawl: 2,805 t		Trawl: 2,805 t		Trawl: 2,347 t
Element 1	2. 2016 use (2,354 t)		Non-trawl: 710 t		Non-trawl: 710 t		Non-trawl: 594 t
Starting point	3. 2017 use (1,958 t)	1,745 t for A80	Total: 3,515 t t	3,515 t	Total: 3,515 t	594 t	Total: 2,941 t
			Trawl: 3,532 t		Trawl: 3,532 t		Trawl: 3,291 t
Element 2	1. 2016 PSC limit (3,515 t)		Non-trawl: 894 t		Non-trawl: 894 t		Non-trawl: 833 t
Ceiling	2. 2015 PSC limit (4,426 t)	2,325 t for A80	Total: 4,426 t		Total: 4,426 t	833 t	Total: 4,124 t
	1. 2,354 t						
	2. 1,758 t		Trawl: 1,879 t		Trawl: 1,879 t		Trawl: 1,403 t
Element 3	3. 1,177 t		Non-trawl: 475 t		Non-trawl: 475 t		Non-trawl: 355 t
Floor	4. 1,000 t	1,412 t for A80	Total: 2,354 t	2,354 t	Total: 2,354 t	355 t	Total: 1,758 t
	,	,	,	,	,		,

	February 2019 Motion	A80 Proposal	Alternative 2-2		UCB Proposal	Alternative 2-4	FLC Proposal	Alternative 3.2a
Element 4 Breakpoint	 25% below/above average above or below average 							
Element 5 Responsivene ss	 Up faster than 1:1 Up slower than 1:1 Down faster than 1:1 Down slower than 1:1 1:1 	NA	NA		1:1	1:1.		
Element 6: Constraint	 5. 1.1 1. 5% constraint 2. 15% constraint 3. 25% constraint Suboption: limit change from current and implementation 	Index is average of recent two years	Index is average of recent standardized two years		15% maximum	15% maximum	15% maximum	15% maximum
Element 7:	Specify breakpoints in a lookup table with a maximum of 12 breakpoints in each dimension. Each index standardized using Option 1: standardize to average of 1998-2018 Option 2: standardize to	, Breakpoints in a	Breakpoints translated to gear index and standardized to	L	The index was star in our Alternative	ndardized but not in the propos	Evenly space breakpoints between floor and ceiling with starting point at 1 and 1. Both indices standardized to	Evenly space breakpoints between floor and ceiling with starting point at 1 and 1. Both indices standardized to
Breakpoints	current year	single dimension	2018		NA	NA	mean	mean

	February 2019 Motion	FVOA Proposal	Alternative 2-4	Directed Users Proposal	Alternative 3-3a
Applies to		Total PSC Limit	Trawl Non-trawl	Total PSC limit	Trawl Non-trawl
Indices	1998-2018 Primary standardized to recent year 1. Secondary to recent year 2. Primary averaged over recent 2 yrs	The intent use only s Setline for total		Primary: Standardize 2017 Trawl survey secondary, Standardize to mean	Setline Primary, standardize to 2018 Trawl survey secondary, standardize to mean
Alternative	 No action Single index EBS bottom trawl survey. IPHC setline survey Primary & secondary trawl then setline. setline then trawl 	Alt 2, option 2	Alternative 2	Alt 3: Option 2	Alt 3: Option 2
Element 1 Starting point	1. 2016 PSC limit (3,515 t) 2. 2016 use (2,354 t) 3. 2017 use (1,958 t)	2,018 t 2,127 t	Trawl: 1,610 t Non-trawl: 408 t Total: 2,018 t	3: 1,958 t	Trawl:1,563 t Non-trawl: 395 t Total: 1,958 t
Element 2 Ceiling	1. 2016 PSC limit (3,515 t) 2. 2015 PSC limit (4,426 t)	3,515 t	Total: 3,515 t	1: 3,515 t	Trawl: 2,805 t Non-trawl: 710 t Total: 3,515 t
Element 3 Floor	1. 2,354 t 2. 1,758 t 3. 1,177 t 4. 1,000 t	0	Total: 1,000 t	4: 1,000 t	Trawl: 798 t Non-trawl: 202 t Total: 1,000 t


The intent post-meeting was to standardize the secondary index to current year

	Gear	Non-trawl	Trawl
		Starting	Starting
Alternative	Source	Point	Point
1	Status quo	710	2,805
1.a	SSC	475	1,879
1.b	SSC	395	1,563
1.C	WG	0	0
1.d	WG	10,000	10,000

Additional fixed limits analyzed

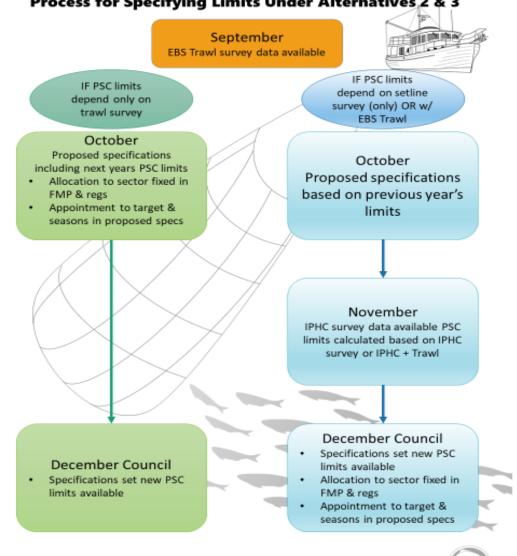
- Per SSC request additional fixed lower limits were analyzed
- For model sensitivity 2 additional options included

Alternatives 2 and 3

Variable PSC limit

Year	Trawl	Non-Trawl	Total
2010	85 52%	79 48%	164
2011	173 71%	70 29%	243
2012	215 79%	59 21%	274
2013	207 77%	60 23%	267
2014	206 84%	39 16%	245
2015	108 83%	23 17%	130
2016	149 86%	24 14%	173
2017	135 88%	18 12%	154
2018	144 92%	12 8%	156
Average	158 79%	42.67 21%	200.67

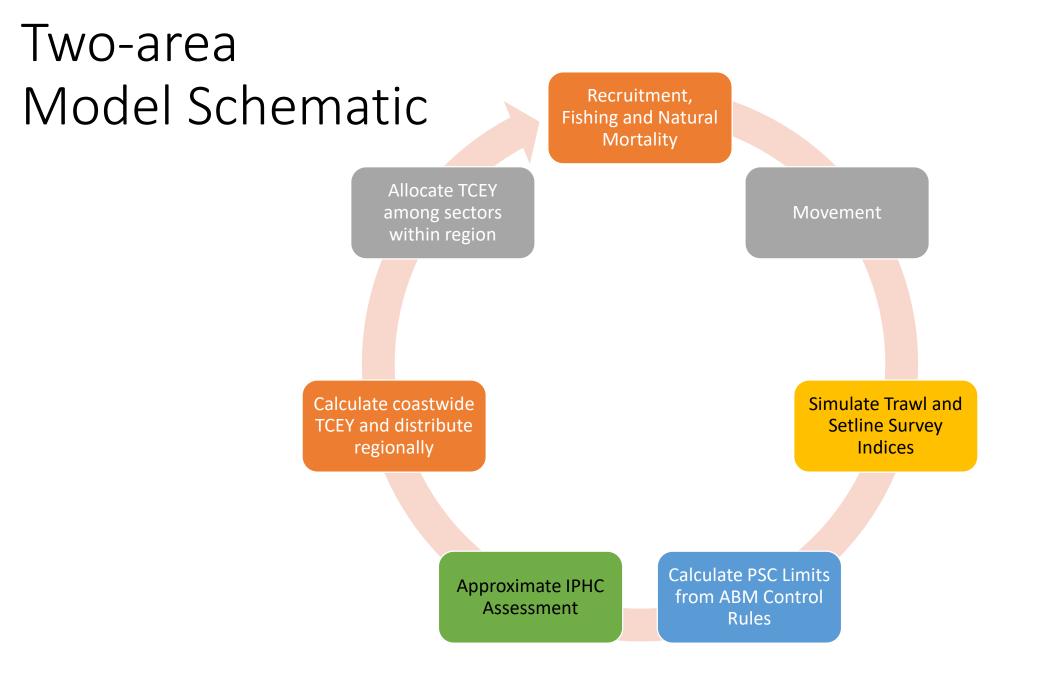
CDQ

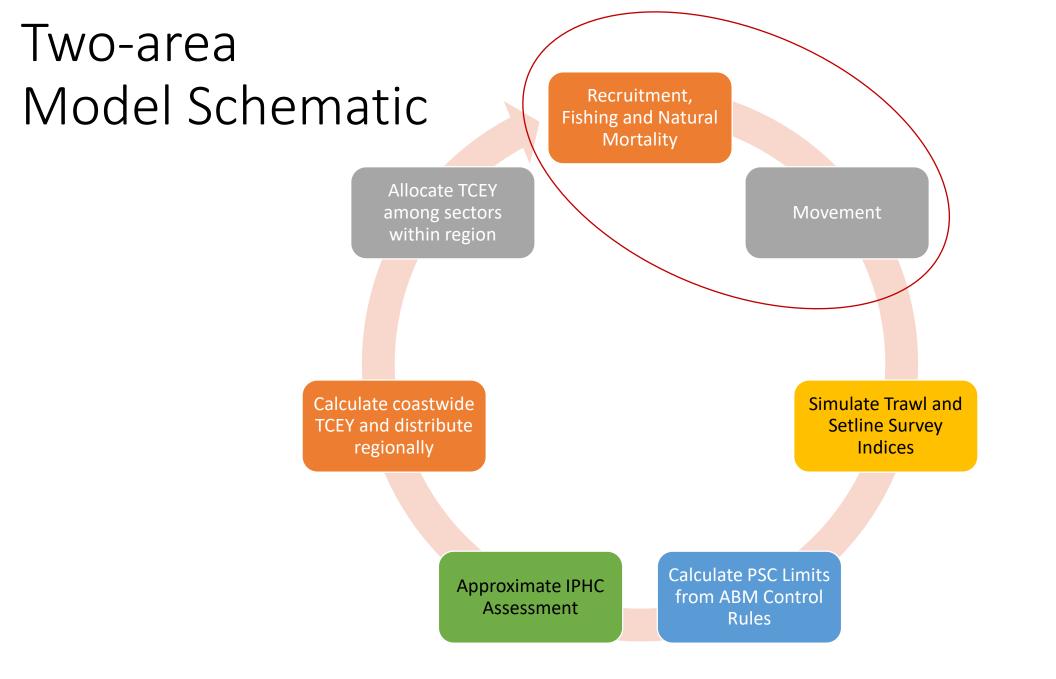

allocation

• Percentage usage of CDQ PSQ by gear type from 2010-2018.

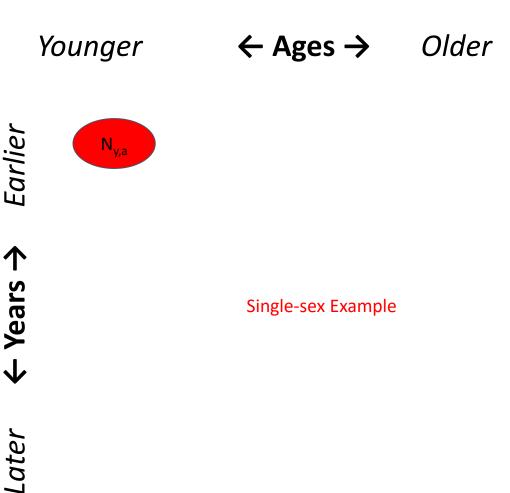
Revised Table 6-8

	Trawl			Non-trawl (NT)			
	A80	TLAS	CDQ	Trawl Total	Cod	Other	NT Total
PSC allocation %	62.3%	26.6%	11.1%	100%	93.1%	6.9%	100%
Status quo limit	1,745	745	315	2,805	661	49	710
Avg. usage (2016-18)	1,307	431	153	1,892		163*	
2024				Trawl			NT
	A80	TLAS	CDQ	limit	Cod	Other	limit
Alternative 1	1,745	745	315	2,805	661	49	710
Alternative 2.1	2,080	890	371	3,341	473	35	508
Alternative 2.1a	2,116	905	378	3,398	474	35	509
Alternative 2.1b	1,207	516	215	1,938	331	24	355
Alternative 2.2	1,746	747	312	2,805	442	33	475
Alternative 2.3	2,080	890	371	3,341	476	35	511
Alternative 2.4	1,334	485	202	1,822	279	21	300
Alternative 3.1	2,016	862	360	3,239	469	35	504
Alternative 3.1a	2,041	873	364	3,279	471	35	506
Alternative 3.1b	2,042	873	364	3,280	476	35	511
Alternative 3.1c	1,934	827	345	3,106	481	36	517
Alternative 3.1d	1,180	505	211	1,896	331	24	355
Alternative 3.2a	1,226	524	219	1,969	464	34	498
Alternative 3.2b	874	374	156	1,403	331	24	355
Alternative 3.3a	696	298	124	1,119	263	20	283
Alternative 3.3a update	803	343	143	1,289	303	22	326
Alternative 3.3b	1,131	484	202	1,816	427	32	459
2030				Trawl			NT
	A80	TLAS	CDQ	limit	Cod	Other	limit
Alternative 1	1,745	745	315	2,805	661	49	710
Alternative 2.1	2,097	897	374	3,367	530	39	570
Alternative 2.1a	2,160	924	385	3,469	537	40	577
Alternative 2.1b	1,251	535	223	2,009	331	24	355
Alternative 2.2	1,746	747	312	2,805	547	41	587
Alternative 2.3	2,096	897	374	3,367	530	39	570
Alternative 2.4	1,153	493	206	1,852	323	24	347
Alternative 3.1	2,078	888	371	3,337	531	39	570
Alternative 3.1a	2,135	913	381	3,430	541	40	581
Alternative 3.1b	2,096	896	374	3,366	538	40	578
Alternative 3.1c	2,067	884	369	3,319	531	39	571
Alternative 3.1d	1,235	528	220	1,984	331	24	355
Alternative 3.2a	1,344	575	240	2,158	509	38	546
Alternative 3.2b	1,128	483	201	1,812	437	32	469
Alternative 3.3a	864	370	154	1,388	327	24	351
Alternative 3.3a update	970	415	173	1,558	367	27	394
Alternative 3.3b	1,209	517	216	1,942	457	34	491

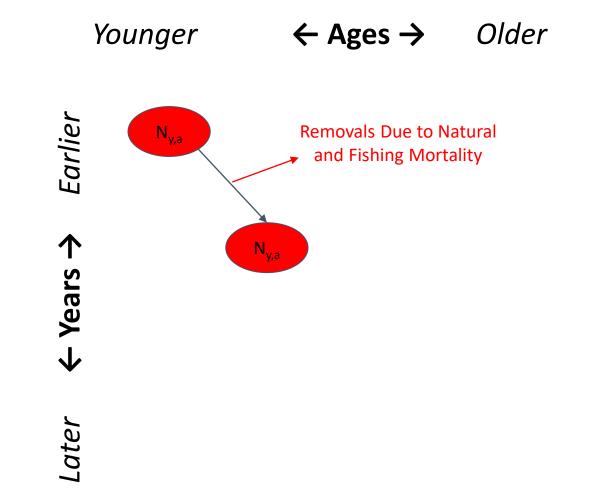

* The 2016-2018 average usage for non-trawl includes both the HALCP and HALCV sectors. **Error! Reference source not found.** illustrates that halibut PSC for the non-trawl category is divided by target species (Pacific cod and 'all other targets'). Though not shown in this table, the non-trawl Pacific cod fishery PSC limit (status quo = 661 t) is further divided through harvest specifications between non-trawl CPs (status quo = 648 t) and non-trawl CVs (status quo = 13 t).

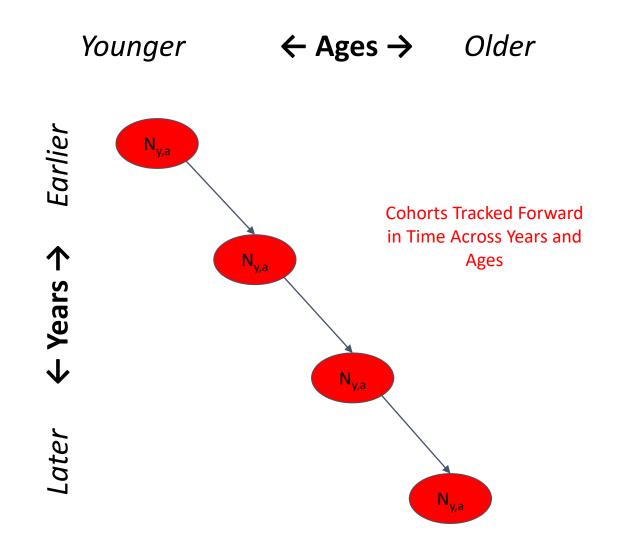


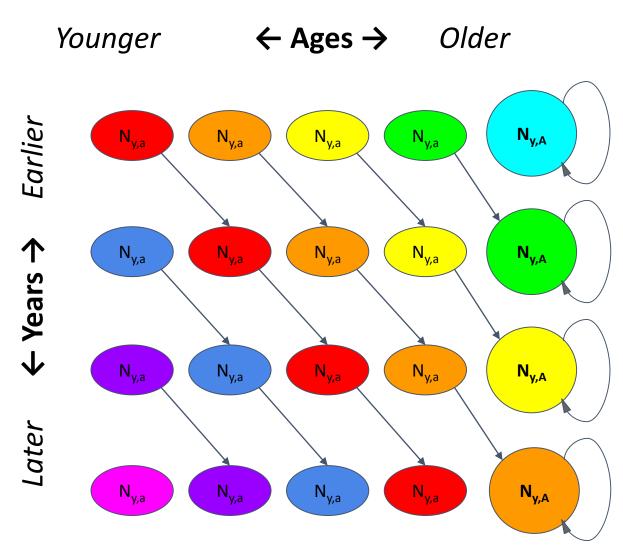
Process for Specifying Limits Under Alternatives 2 & 3


Halibut simulation model overview

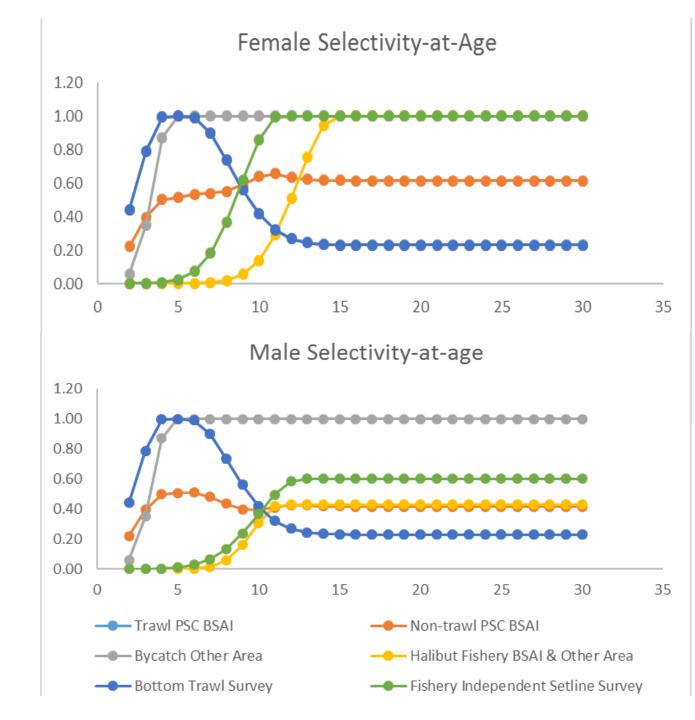
Goal: To compare the ability of alternatives **relative to one another** to meet Council Objectives

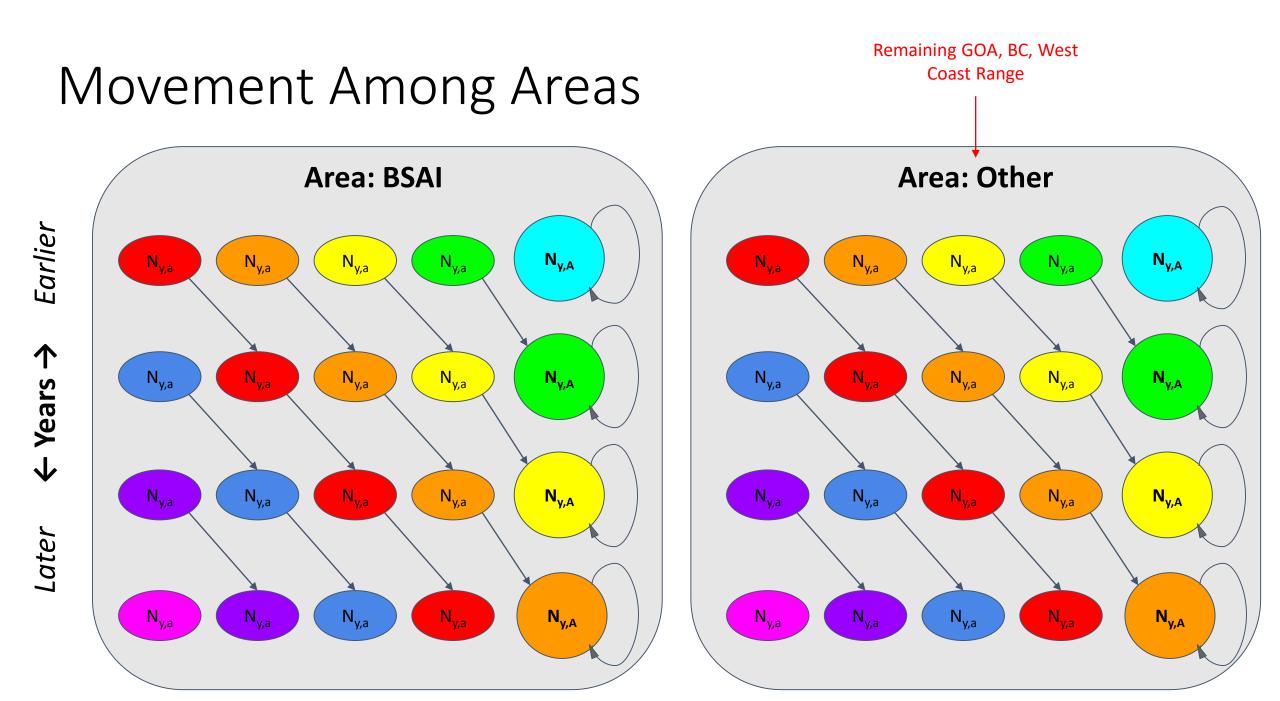


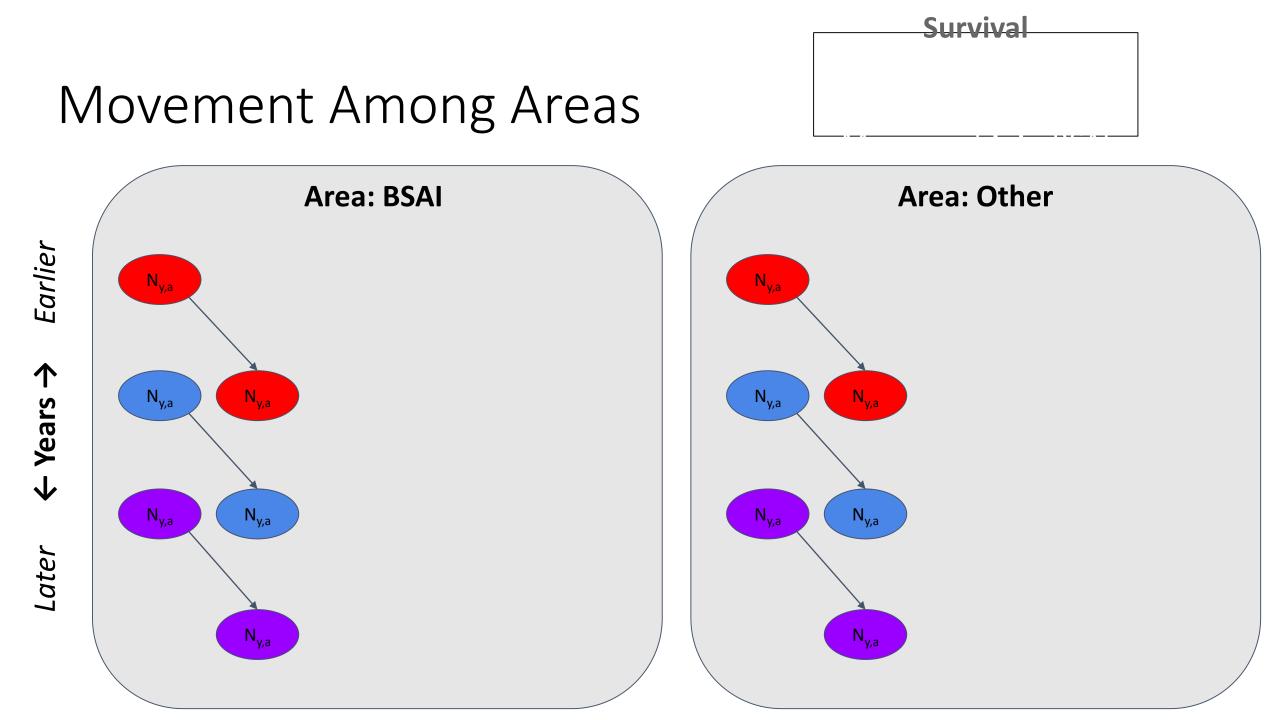

- Sex and age-structured
- 2 Areas
 - BSAI region
 - Remaining GOA, BC, West Coast distribution
- Recruitment
 - Allocated among areas, timevarying
 - Function of Pacific Decadal Oscillation index
- Age-specific movement between areas

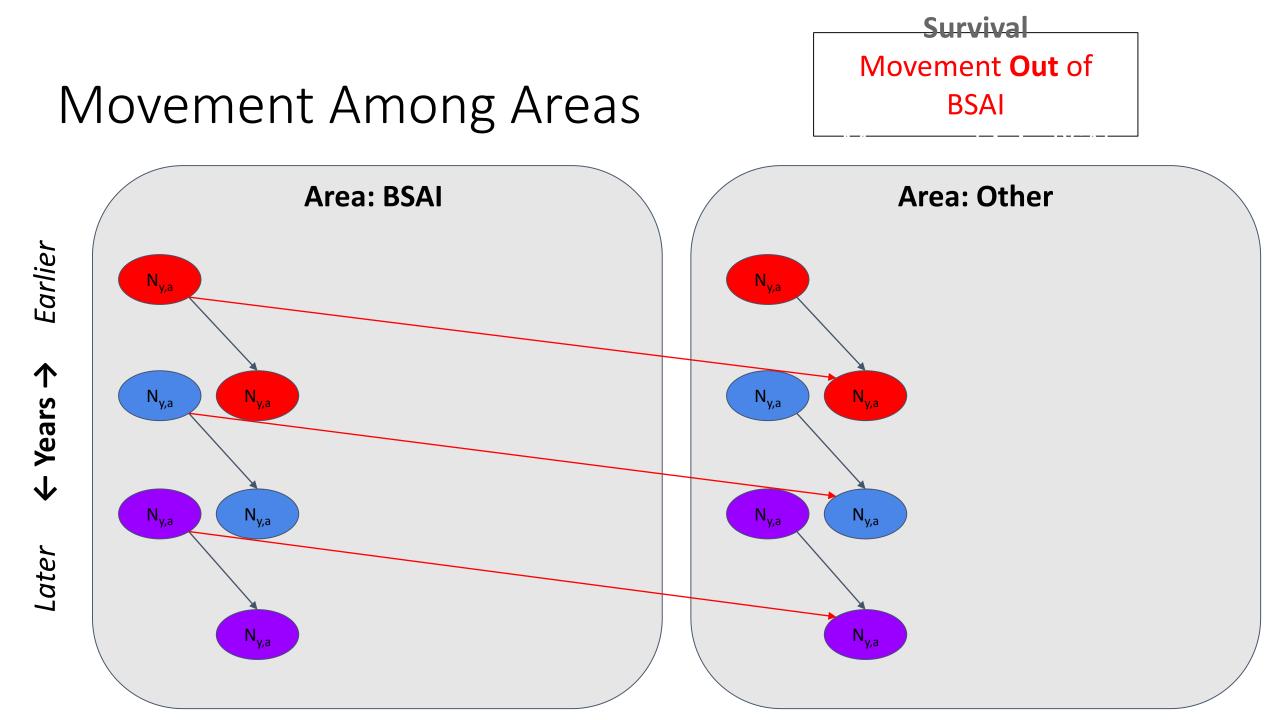

- Sex and age-structured
- 2 Areas
 - BSAI region
 - Remaining GOA, BC, West Coast distribution
- Recruitment
 - Allocated among areas, timevarying
 - Function of Pacific Decadal Oscillation index
- Age-specific movement between areas

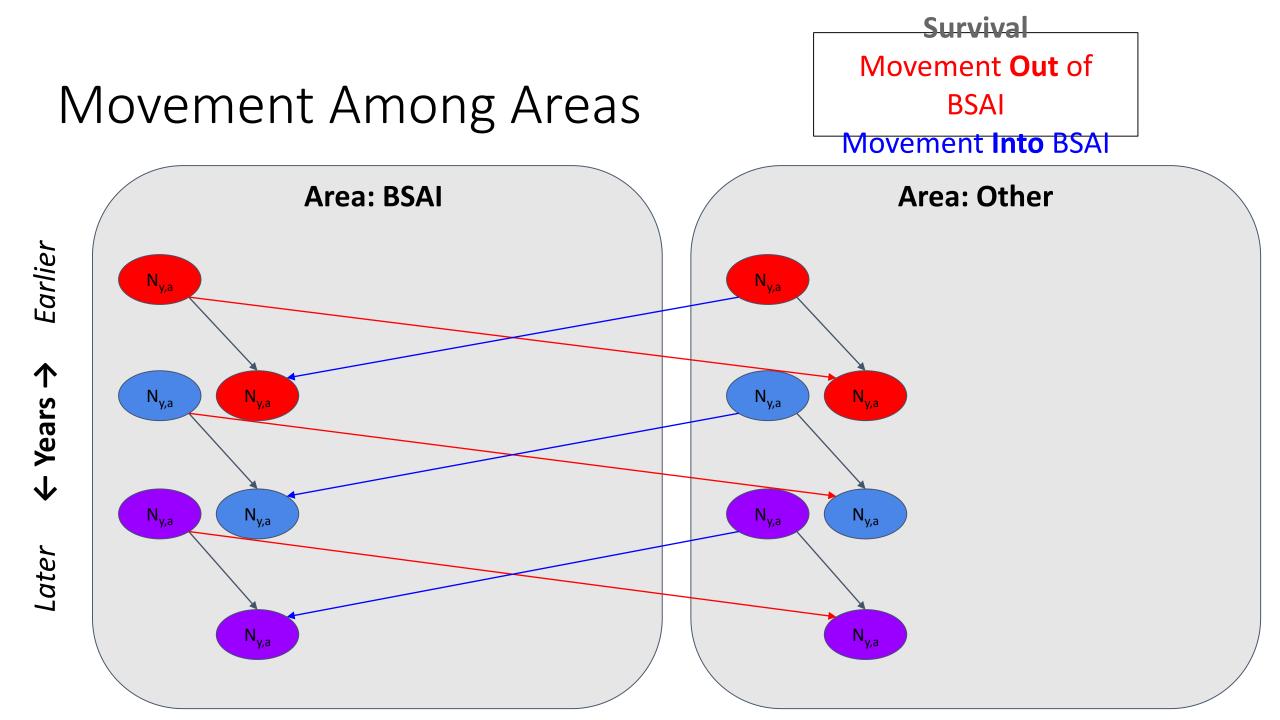
- Sex and age-structured
- 2 Areas
 - BSAI region
 - Remaining GOA, BC, West Coast distribution
- Recruitment
 - Allocated among areas, timevarying
 - Function of Pacific Decadal Oscillation index
- Age-specific movement between areas

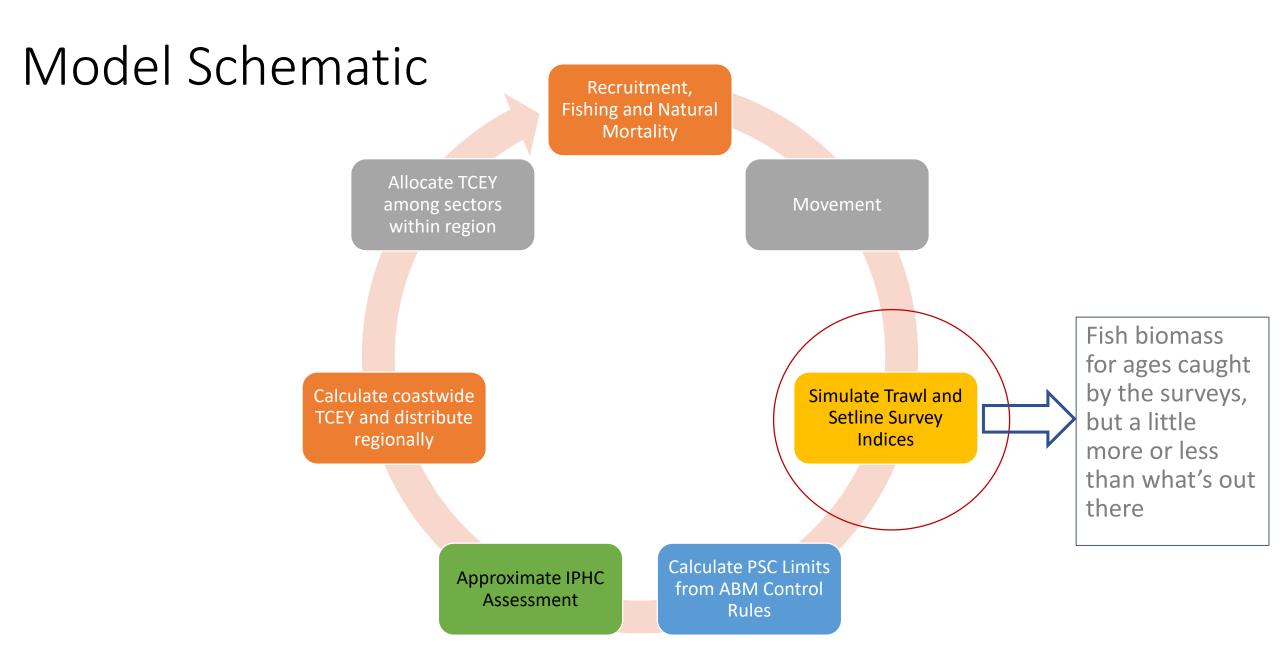

- Sex and age-structured
- 2 Areas
 - BSAI region
 - Remaining GOA, BC, West Coast distribution
- Recruitment
 - Allocated among areas, timevarying
 - Function of Pacific Decadal Oscillation index
- Age-specific movement between areas

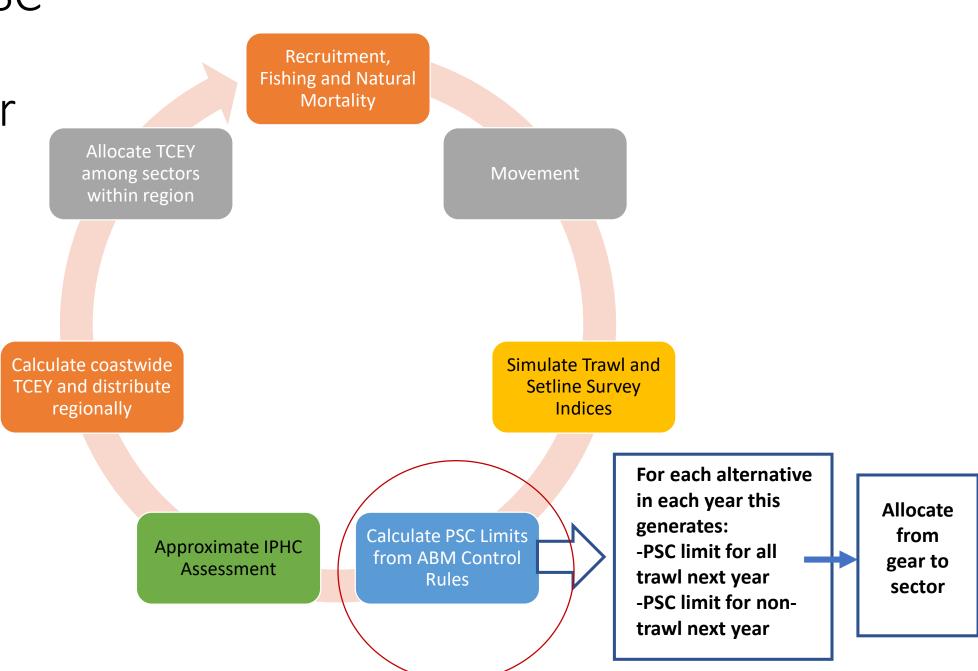


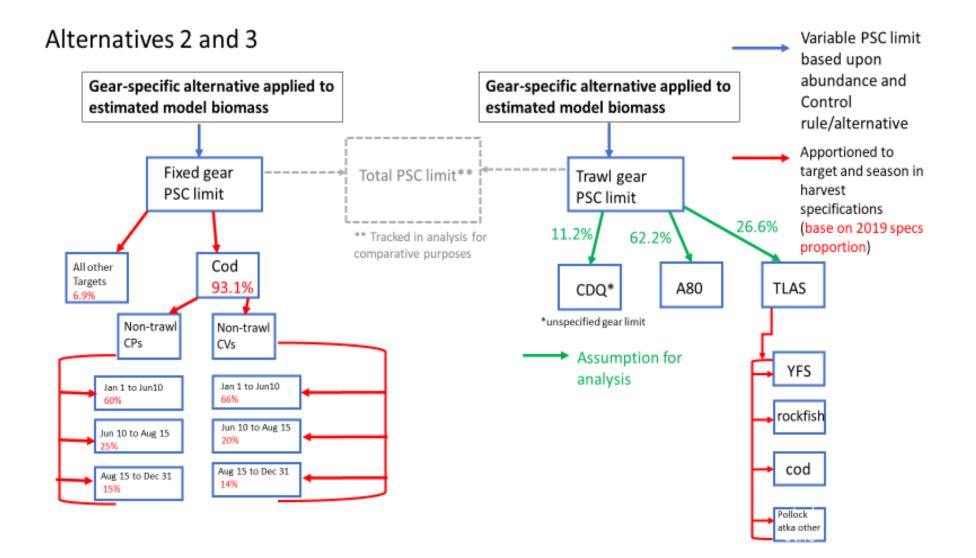

Gear types modeled

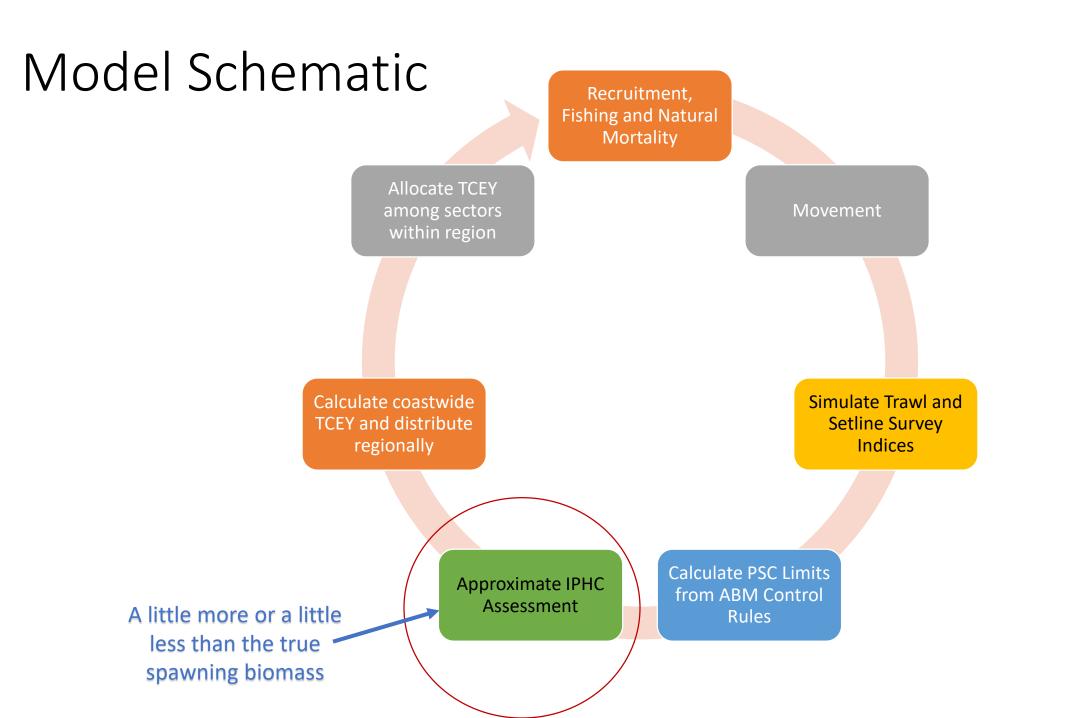

- BSAI Trawl PSC selectivity:
 - Set equal to trawl survey selectivity
 - Rationale: Best available information on plausible selectivity for trawl PSC alone
- BSAI Longline PSC selectivity:
 - Average of the 4ABCDE setline and the BS trawl survey selectivities for most recent year
 - Rationale: % O32 fish in the longline-caught PSC is much lower than for the setline survey, but higher than for trawl PSC. Hooks for Pacific cod are smaller than for the halibut setline survey.
- Halibut fishery selectivity (in BSAI and the other area):
 - Commercial fishery selectivity from the 2018 coastwide long assessment model
 - Rationale: Uses assessment results directly
- Other area bycatch fishery selectivity
 - Coastwide gear-aggregated bycatch selectivity from the 2018 coastwide long assessment model

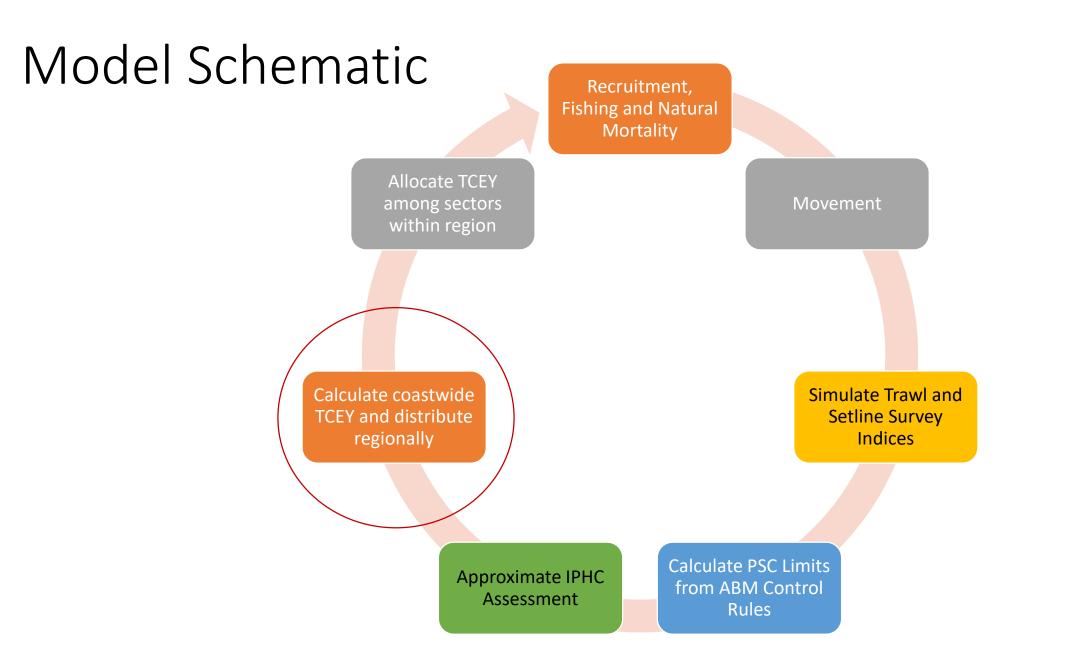

Selectivity

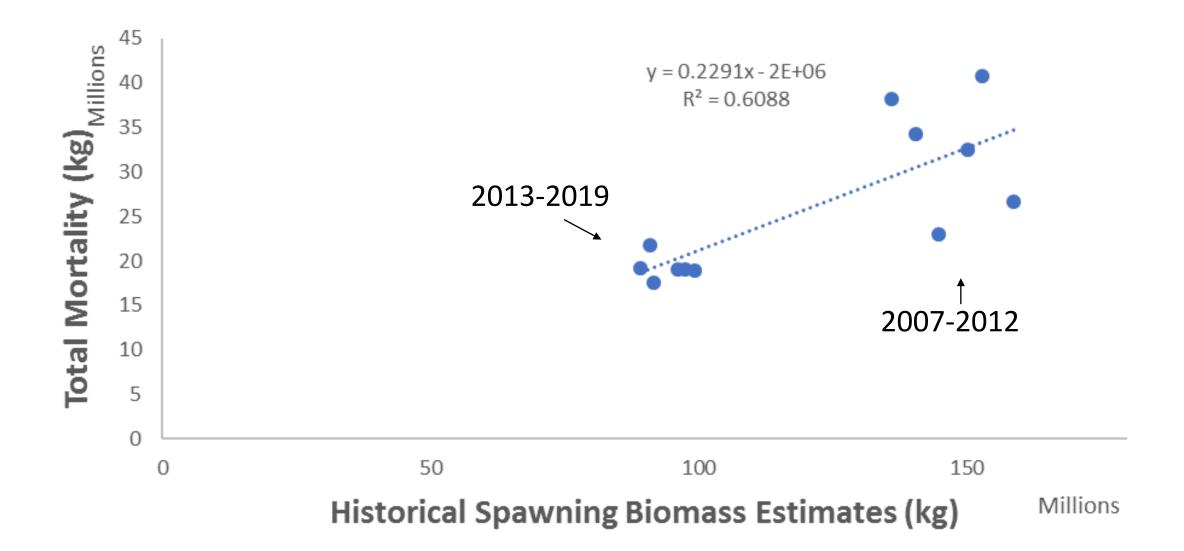




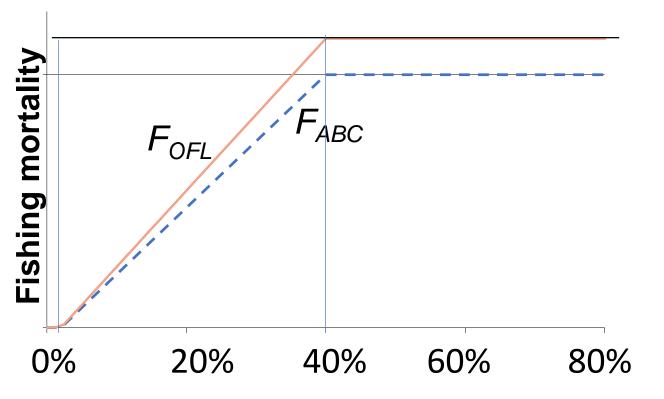





Calculating PSC Limits for the following year



Sector allocation assumptions

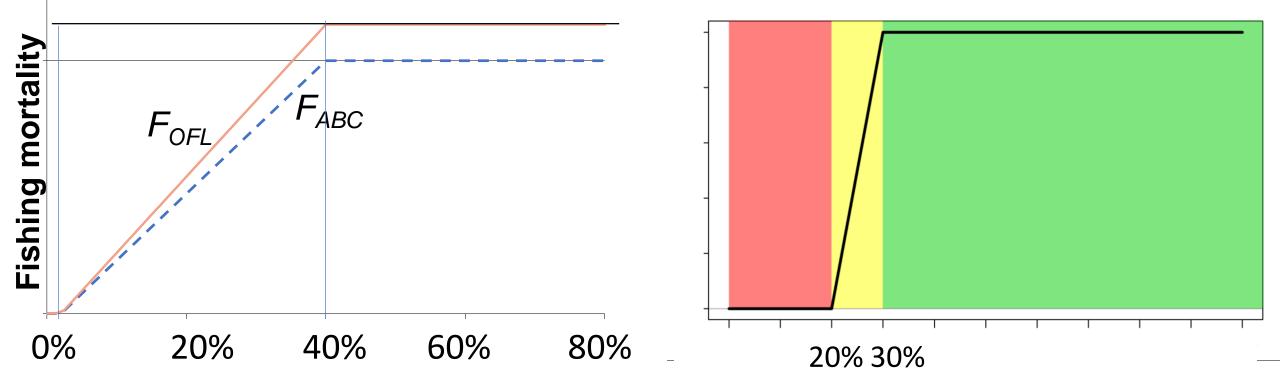


How would a 30:20 rule (or approximation) in TCEY determination influence the results?

- Not currently modeled
- The IPHC's 30:20 rule has never been invoked
- IPHC harvest strategy policy is not binding
- Under low spawning biomass scenarios:
 - Coastwide TCEY would be reduced drastically
 - Increases the likelihood of PSC use > TCEY in BSAI
 - Increases likelihood of closed directed halibut fishery

The 30:20 rule is very steep

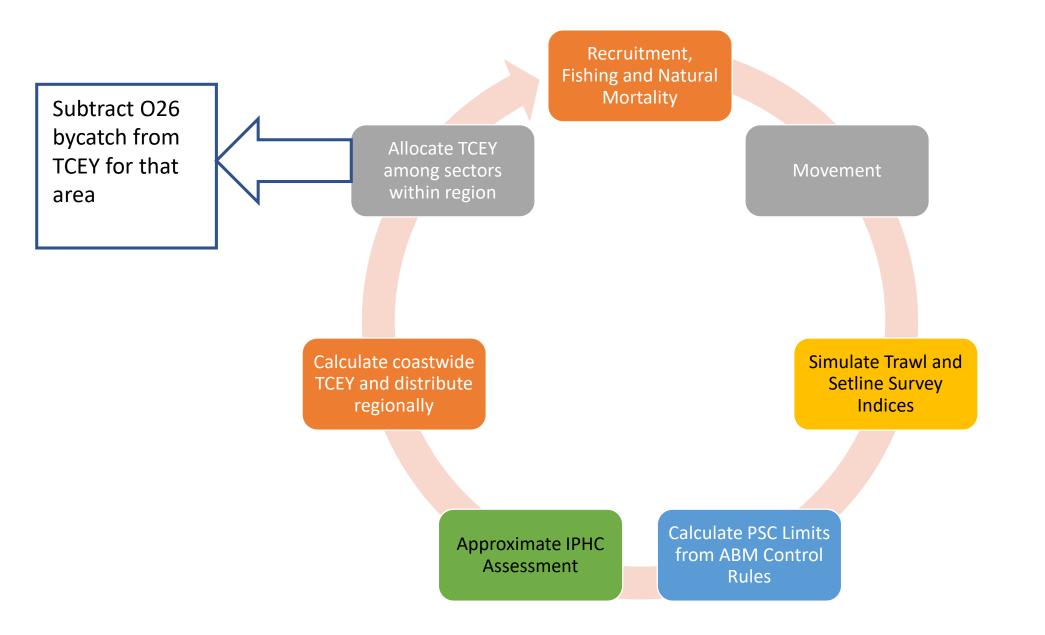
Federally-managed groundfish



Relative spawning biomass

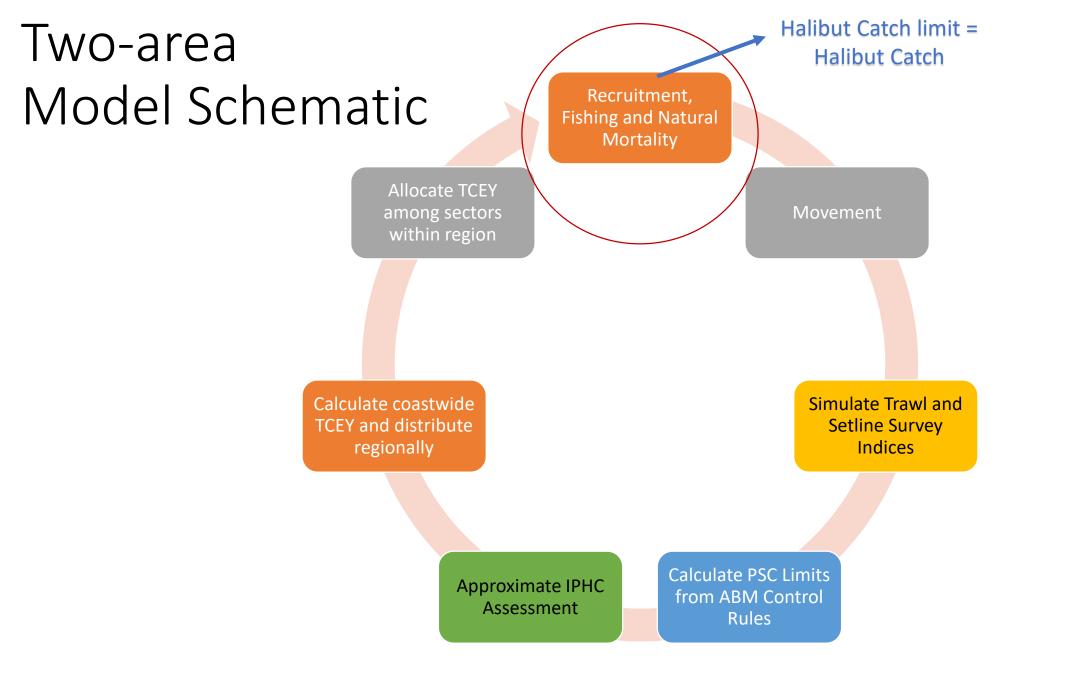
The 30:20 rule is very steep

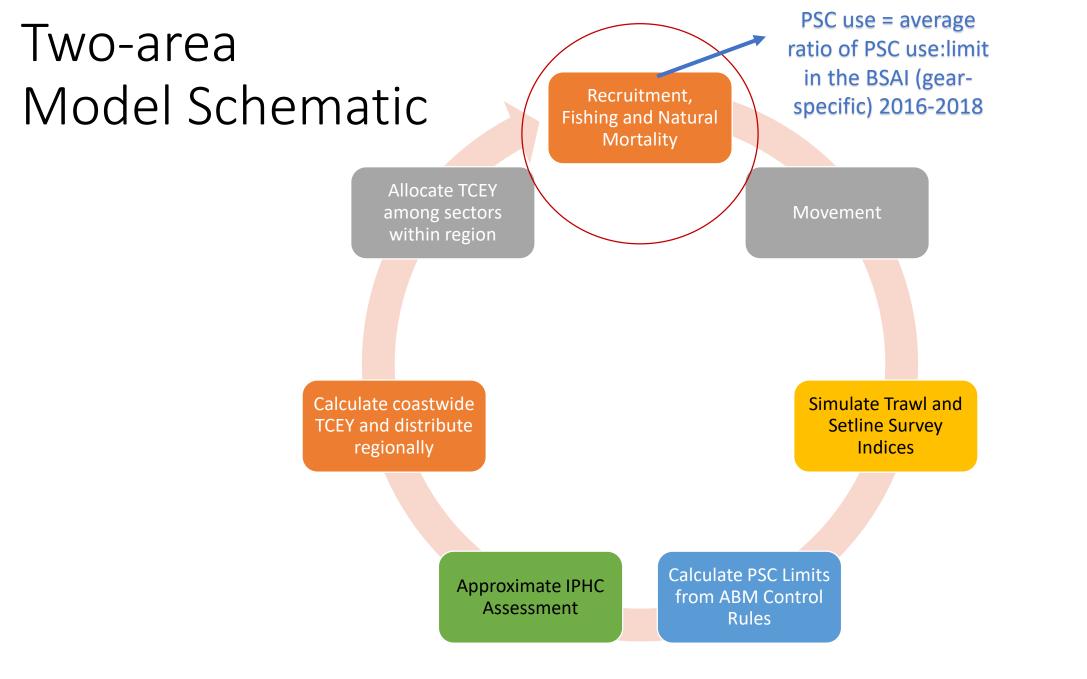
Federally-managed groundfish


Relative spawning biomass

Model distribution of TCEY proxy between BSAI and the other area

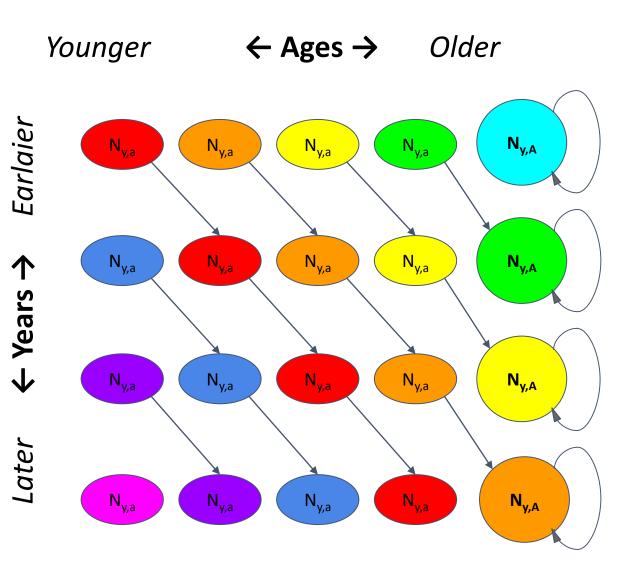
- TCEY in BSAI = that year's proportion of modeled setline survey biomass in the BSAI
- Allows for responsiveness of TCEY to changes in the distribution of biomass over time

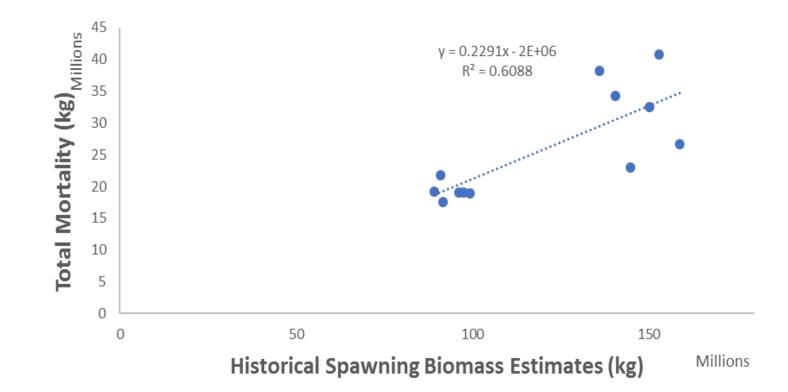

Typo on Page 210!


In the model the proportion of TCEY allocated to the BSAI changes with distribution of survey biomass

Calculating halibut fishery catch from TCEY

- A 26 inch fish corresponds to a 7-year old in the model
- The model subtracts over-7-year-old PSC (or bycatch) from the TCEY in each area
- Model tracks ages (therefore lengths tracked implicitly)



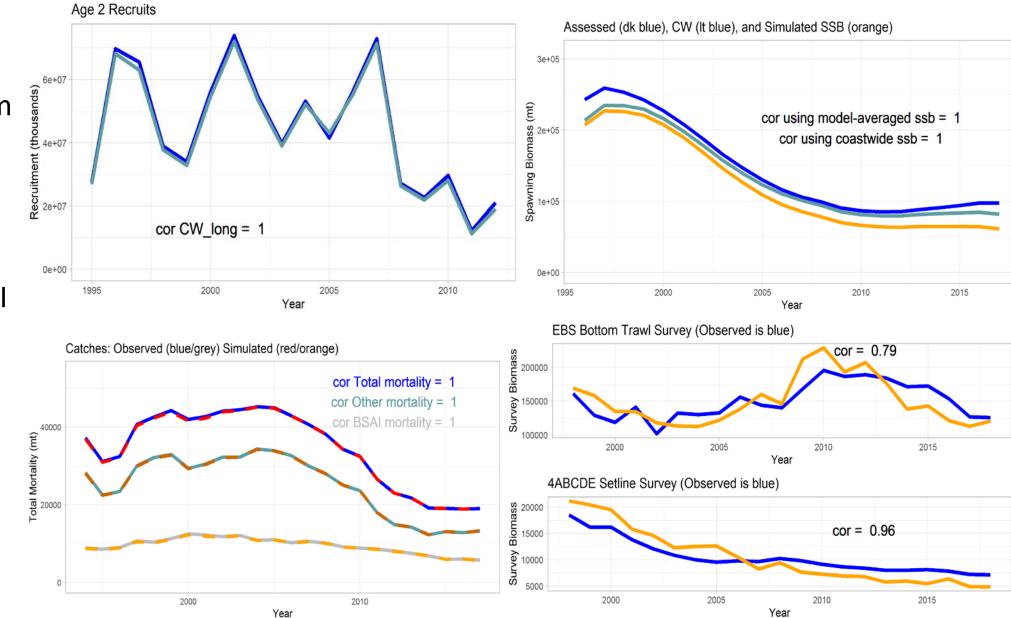

PSC usage relative to the limit

- Used the 3-year average proportion of the PSC usage:PSC limit
- In the future:
 - Better characterize uncertainty about PSC use:limit relationship

All ages (and implicitly all lengths) are included in the model

TCEY determination accounts for U26 on average, to the extent that it was taken into account historically

- BSAI TCEY Previous year's O26 realized PSC usage =BSAI directed halibut fishery catch limit (IPHC practice)
- Average length-at-age relationship to define age of 26 inch fish
- 26-inch fish is on average a 7 year old


- We did not model an operating model scenario with TCEY determination as a function of spawning potential ratio.
- Application of an SPR-based fishing intensity would take into account yearly fluctuations in U26 fish

Model validation

Can the model mimic halibut population dynamics?

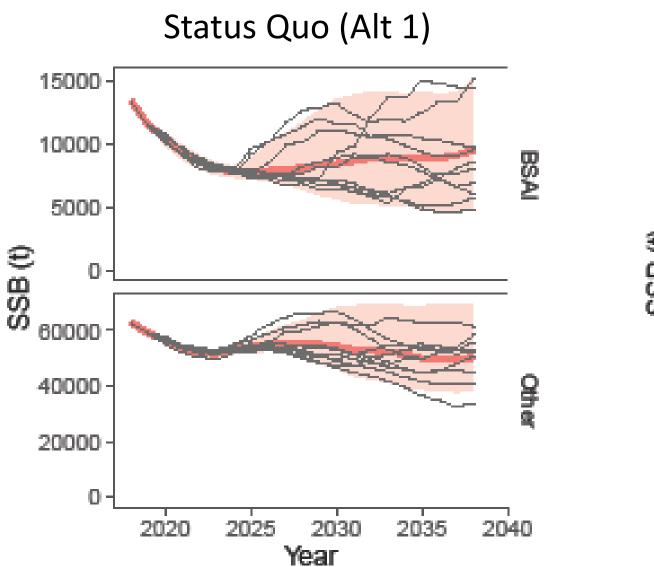
Test using past catches and recruitments

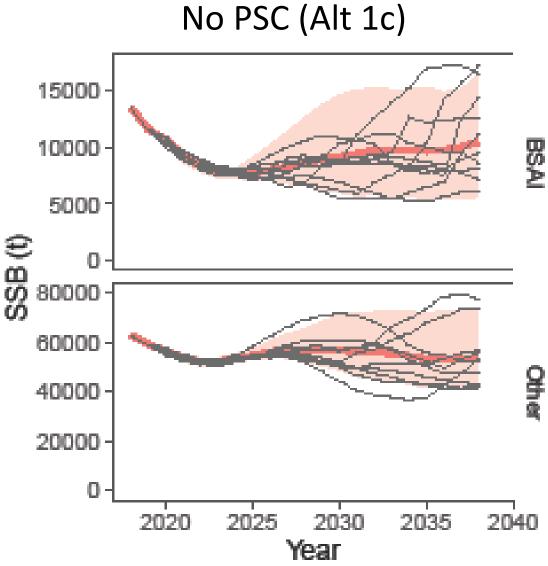
- Age-2 recruitment from BSAI
- "Other" area recruitment = coastwide – BSAI
- Matches both survey indices: proportion of recruitment to the BSAI varies over time

Overview of Alternative results

General Trends

Conclusions on major features of control rules

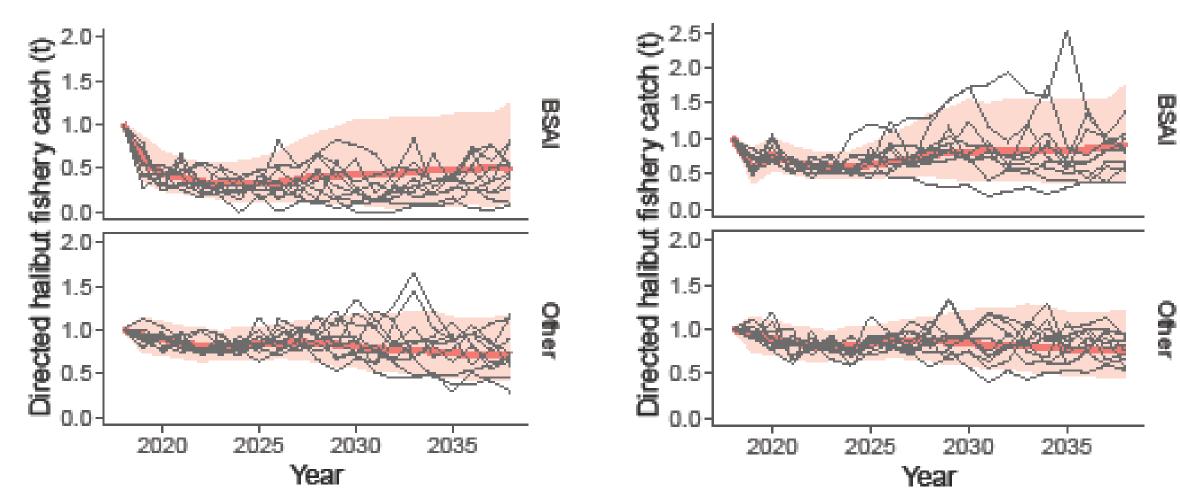

Effects of Elements and options

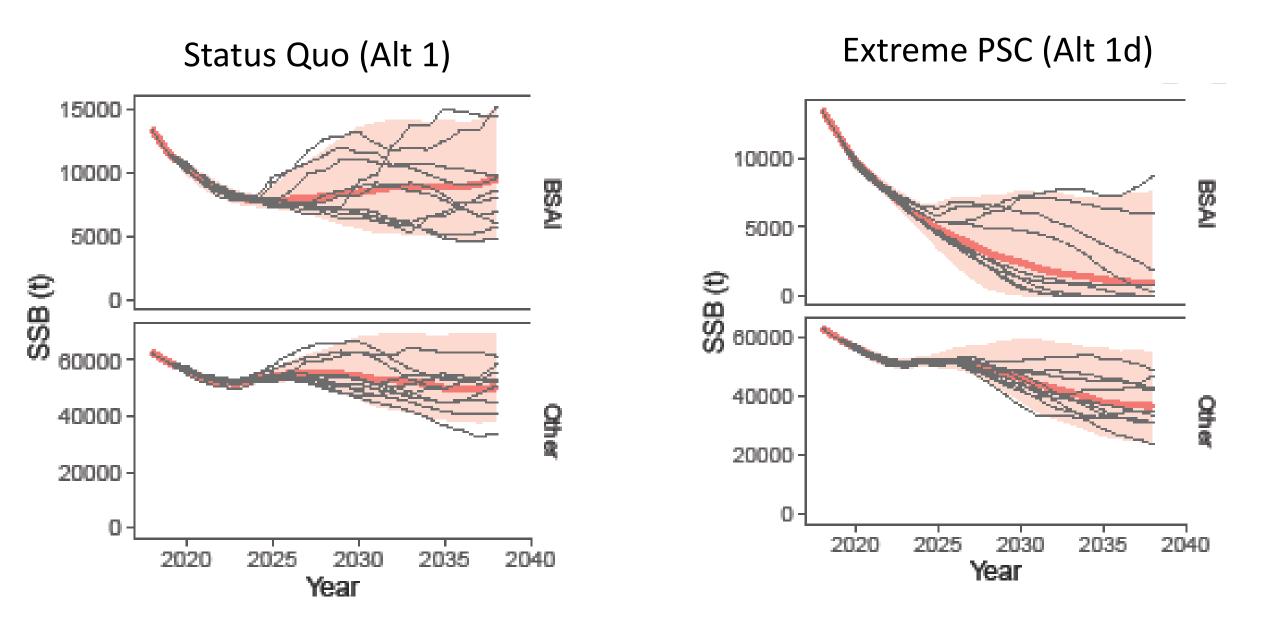

Sector specific PSC limits under Alternatives

Performance metrics

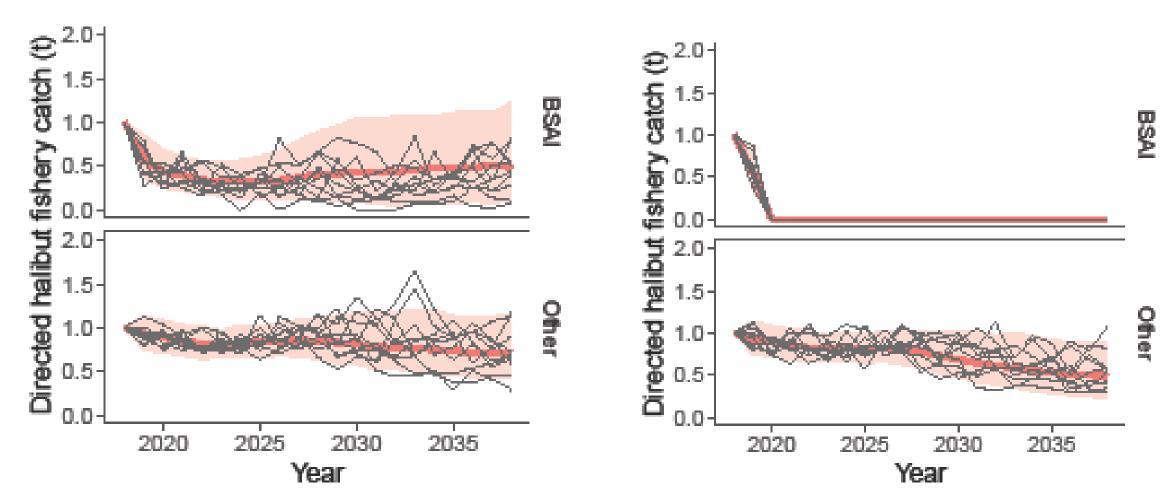
General trends

Demonstrations




Demonstrations

Status Quo (Alt 1)

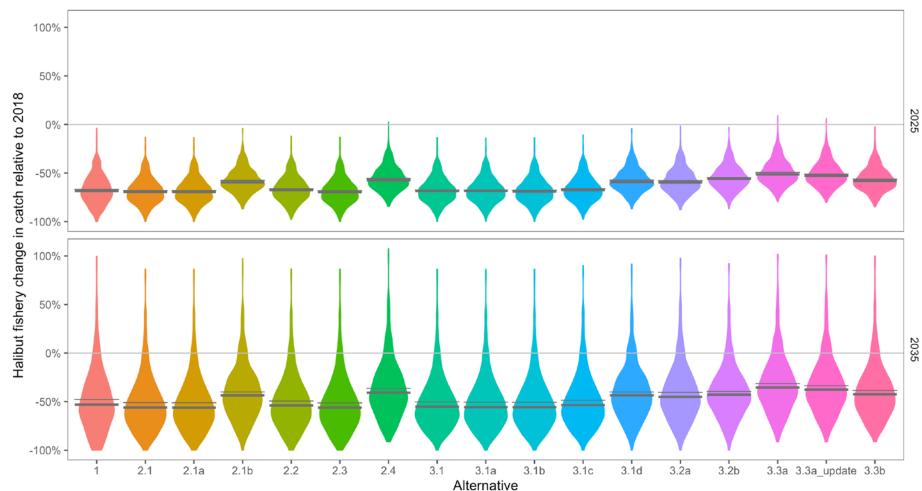

Demonstrations

Demonstrations

Status Quo (Alt 1)

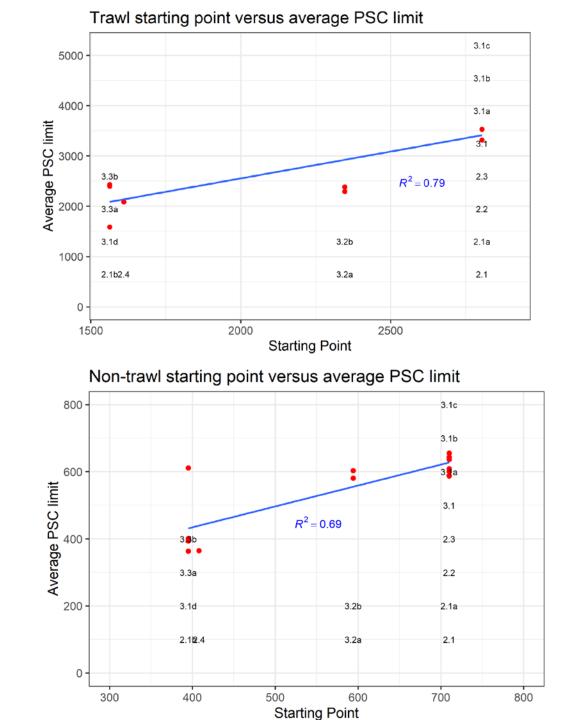
Extreme PSC (Alt 1d)

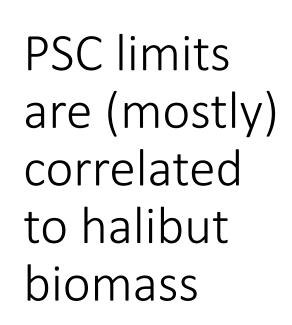
Revised Table 6-1

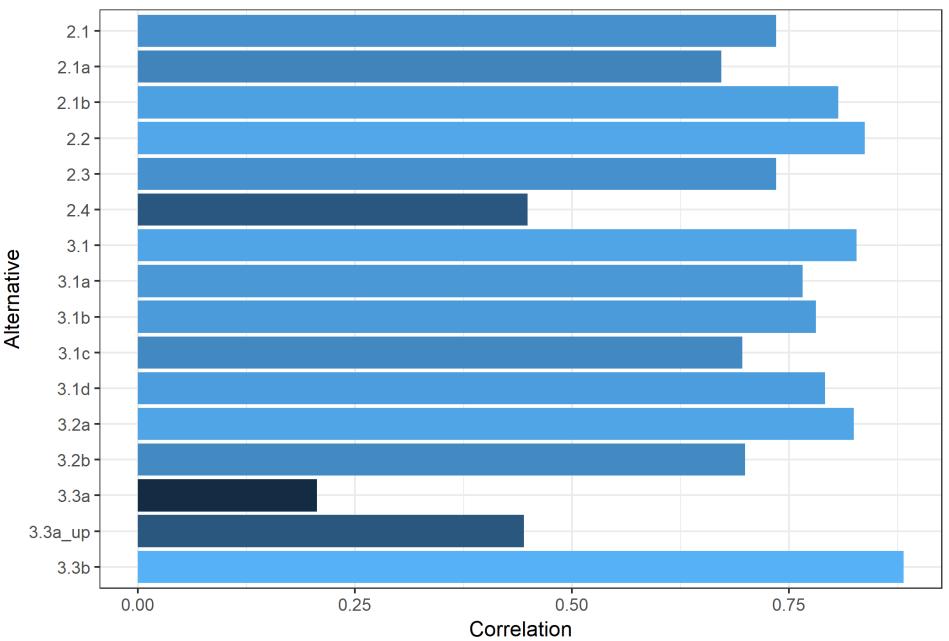

Projected median % change from status quo alternative

PSC limit

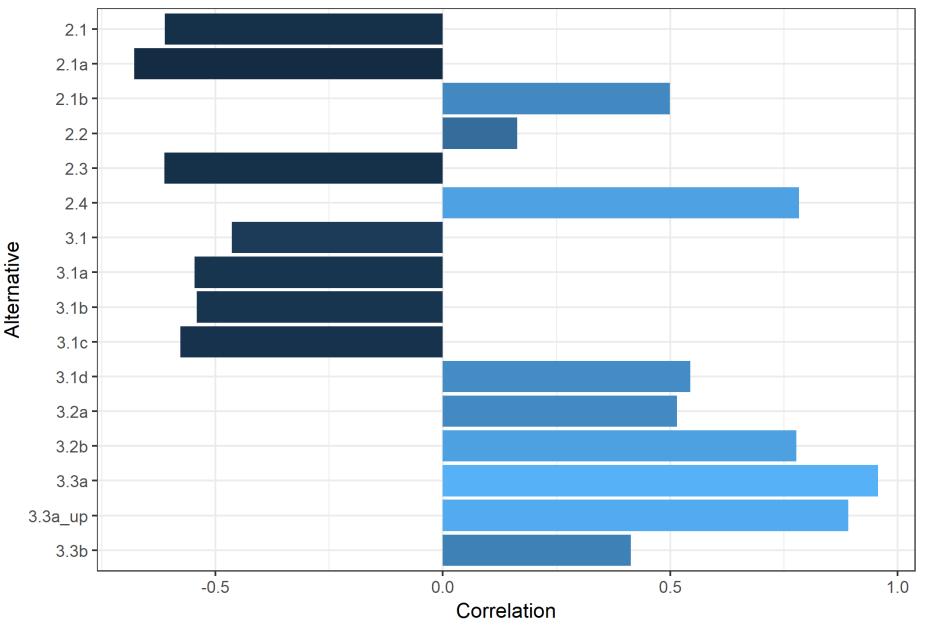
				•				0.0 0.C) -	
1 -[0	0	0	0] 1-	0	0	0	0	7
1a -	-33	-33	-33	-33	1a-	-33	-33	-33	-33	
1b -	-44	-44	-44	-44	1b-	-44	-44	-44	-44	
hange 2.1-	0	6	14	14	2.1 -	3	11	19	19	
	1	8	15	15	2.1a -	4	14	21	20	
2.1b -	-28	-37	-32	-32	2.1b -	-28	-35	-29	-29	
	-3	-7	-7	-3	2.2 -	-2	-3	-3	-2	
2.3 -	0	6	14	14	2.3 -	3	11	19	19	
2.4 -	-28	-40	-38	-37	2.4 -	-28	-38	-35	-35	
3.1 -	-1	3	10	13	3.1 -	1	7	15	17	
3.1a -	0	5	13	14	3.1a -	3	10	18	18	
3.1b -	-1	5	12	15	3.1b -	2	9	17	19	
3.1c - 3.1d -	-3	2	8 -34	11	3.1c-	-1	7 -37	13	15	
3.1d - 3.2a -	-28 -28	-39 -30	-34	-32 -23	3.1d - 3.2a -	-28 -28	-37	-31 -26	-30 -23	
3.24 - 3.2b -	-28	-50	-20	-25	3.2a - 3.2b -	-28	-50	-20	-25	Percent
3.3a -	-36	-60	-56	-51	3.3a -	-36	-60	-44	-51	
3.3a_up -	-36	-55	-49	-45	3.3a_up -	-36	-55	-49	-45	change
	-36	-38	-31	-29	3.3b -	-36	-38	-31	-29	v SQ
	2020	2023	2026	2029		2020	2023	2026	2029	
lat	2020	2023	2026	2029		2020	2023	2026	2029	30
- Alternative		BSA	I SSB				Halibut fis	herv catch		
T A										- 0
	0	0	0	0	1-	0 24	0	0	0	
1a - 1b -	1	-1 -2	0 0	2 2	1a - 1b -	32	27 36	31 43	31 41	-30
2.1 -	0	-2	0	0	2.1 -	0	-2	-4	-7	
2.1a -	0	0	0	0	2.1 - 2.1a -	0	-2	-4	-7 -8	-60
2.1b -	0	-1	-1	1	2.1b -	11	29	29	26	
	õ	0	0	1	2.2 -	4	4	3	-1	
Spawning 2.2	0	0	0	0	2.3 -	0	-2	-5	-7	
2.4 -	0	-1	-1	1	2.4 -	11	32	34	33	
biomass ^{3.1} -	0	0	0	0	3.1 -	1	-1	0	-6	Halibut
01101	0	0	0	0	3.1a -	0	-1	0	-6	
3.1b -	0	0	0	0	3.1b -	0	-2	-2	-6	fishery
3.1c -	0	0	0	0	3.1c-	3	2	3	-2	Instictly
3.1d -	0	-1	-1	1	3.1d -	11	30	30	26	
3.2a -	0	-1	0	1	3.2a -	11	27	28	22	catch
3.2b -	0	-1	-1	2	3.2b -	11	35	37	30	
3.3a -	0	-1	-1	2	3.3a -	14	46	53	46	
3.3a_up -	0	-1	-1	2	3.3a_up -	14	44	47	41	
3.3b -	0	-1	-1	2	3.3b -	14	32	32	28	
	2020	2023	2026	2029		2020	2023	2026	2029	
					Year					

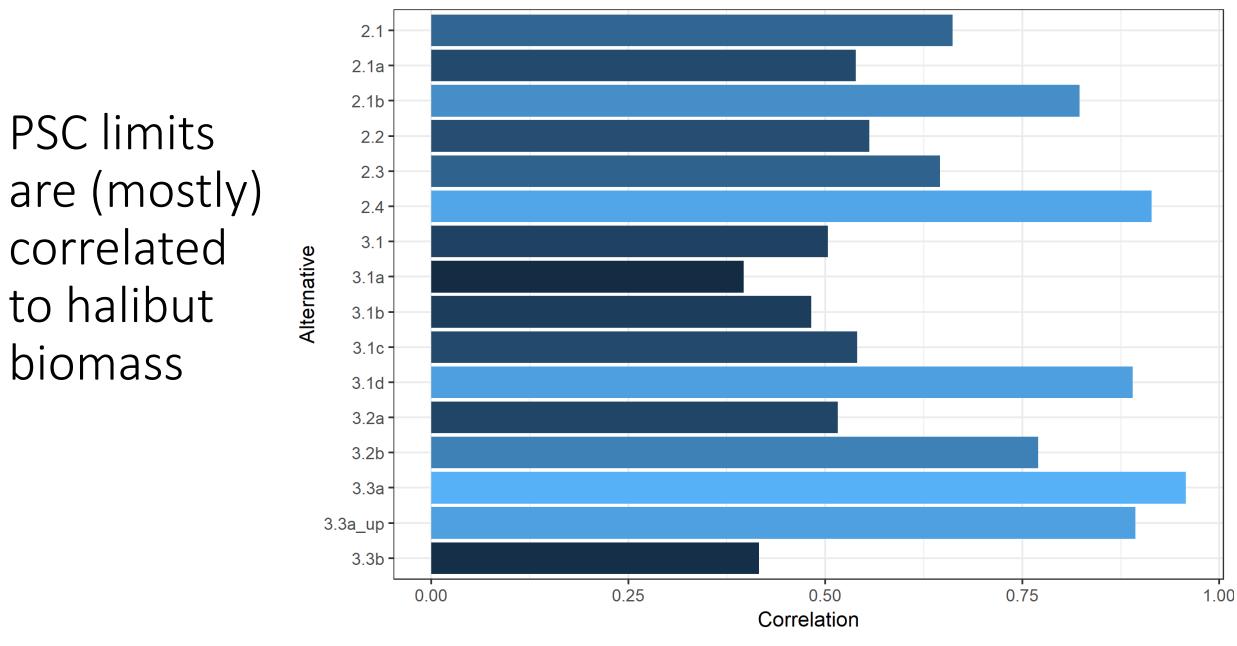

- Halibut fishery catch relative to 2018 value in 2025 and 2035
- Compare across alternatives
- Thick and thin horizontal bars: median and mean
- Thickness of vertical lines show number of simulations at a particular % change


Conclusions on major features of control rules


PSC limit most sensitive to starting point

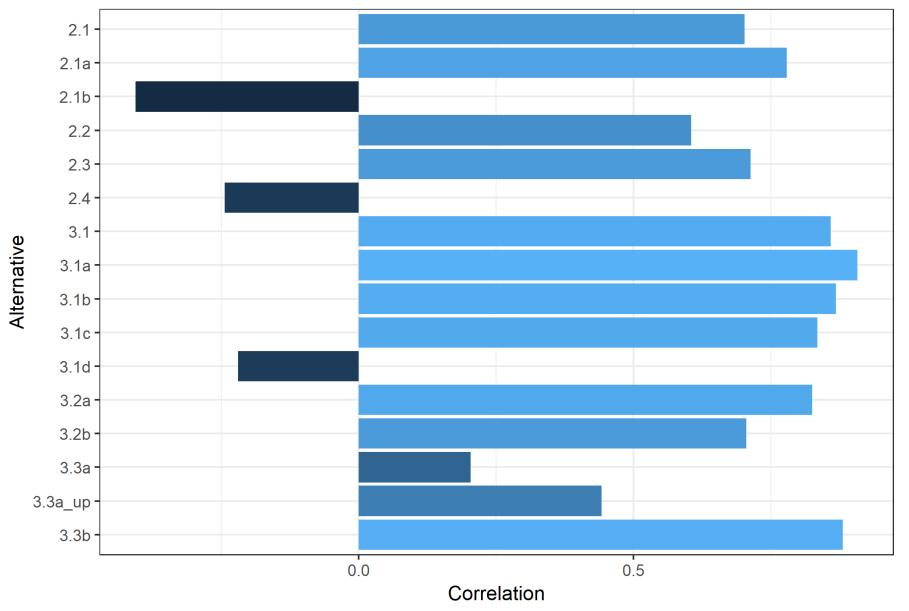
Average = last 5 year's average PSC limit


Trawl PSC versus BS total biomass

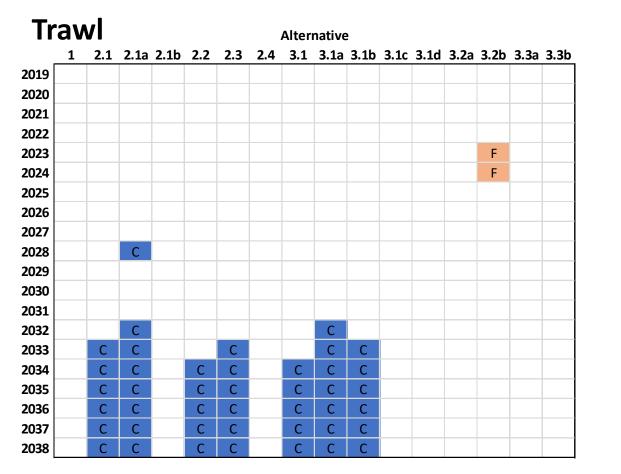


Trawl PSC versus BS spawning biomass

Correlations to nonmatching biomass measure



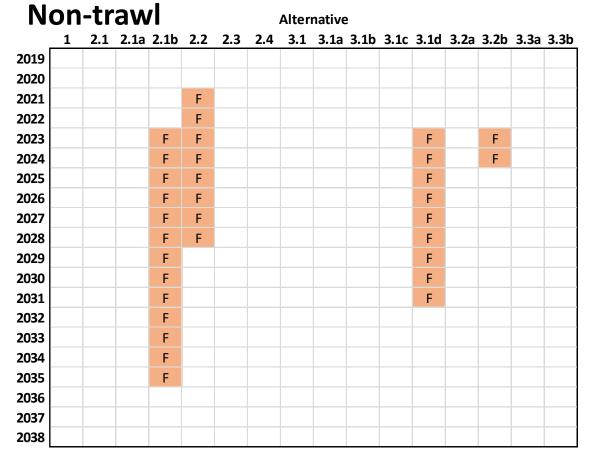
Non-trawl PSC versus BS spawning biomass

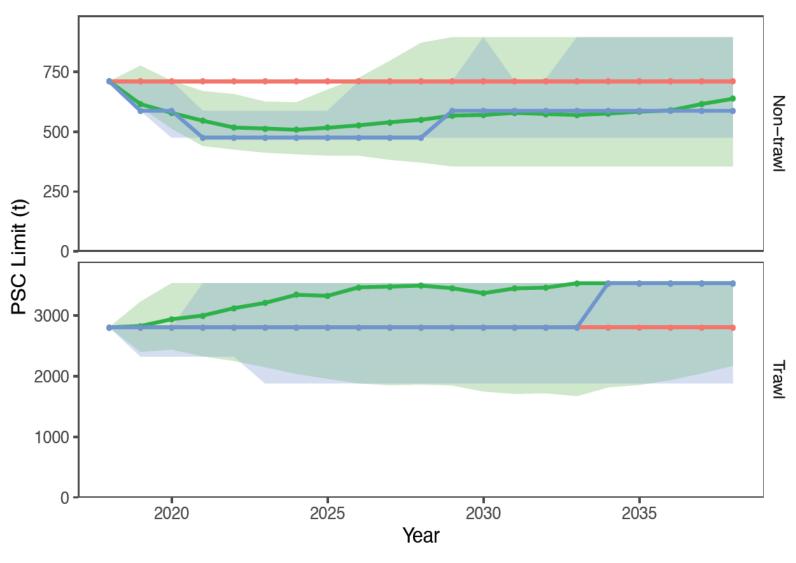


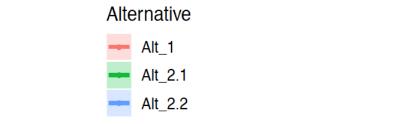
Non-trawl PSC versus BS total biomass

Correlations to nonmatching biomass measure

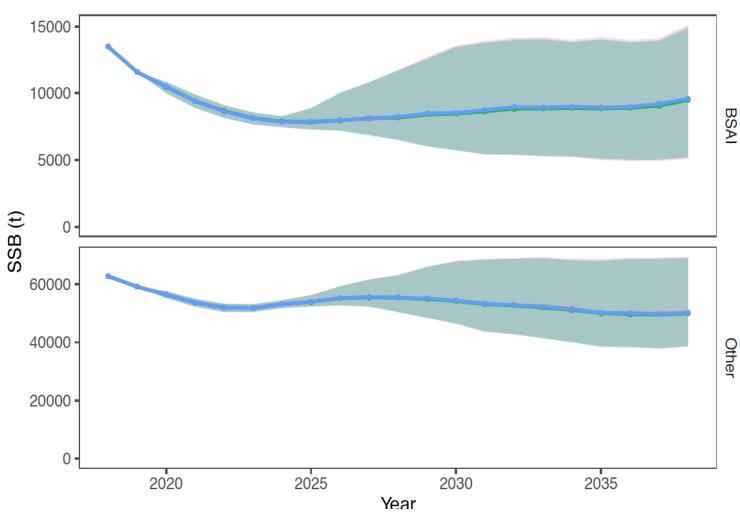
Some alternative PSC limits often stuck on floors and ceilings

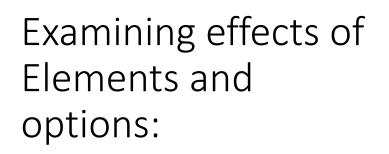


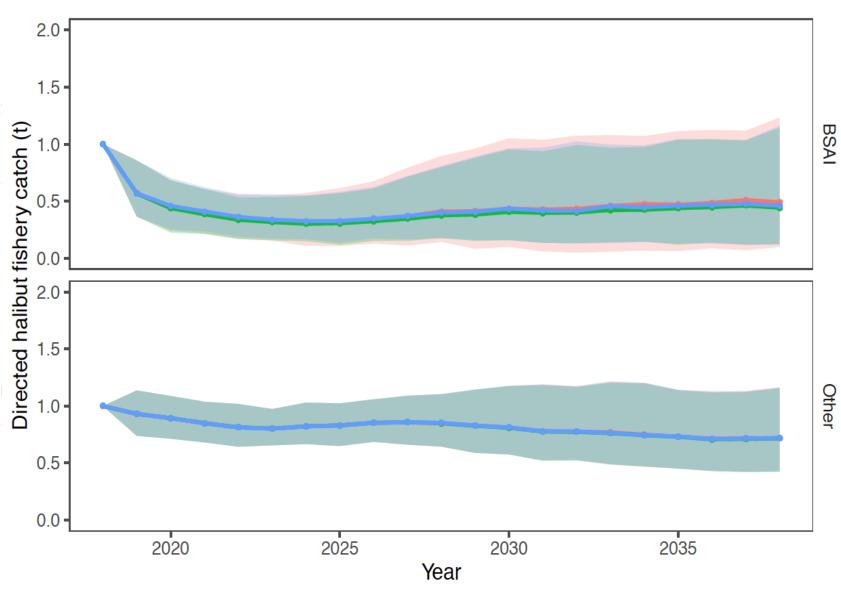

Figure 6-11. Occurrence of median trawl PSC limits reaching a floor (F, pink) or a ceiling (C, blue) for Figure 6-12. Occurrence of median non-trawl PSC limits reaching a floor (F, pink) or a ceiling (C, blue) for each alternative and year in the simulation. Occurrence of median non-trawl PSC limits reaching a floor (F, pink) or a ceiling (C, blue) for each alternative and year in the simulation.


Examples

Examining effects of Elements and options:


15% constraint (Alt 2.1) compared with stairstep (Alt 2.2)




Examining effects of Elements and options:

15% constraint (Alt 2.1) compared with stairstep (Alt 2.2)

15% constraint (Alt 2.1) compared with stairstep (Alt 2.2)

Examining effects of Elements and options (2.1 and 3.1):

Addition of secondary index (3.1) for similar stock status trajectory

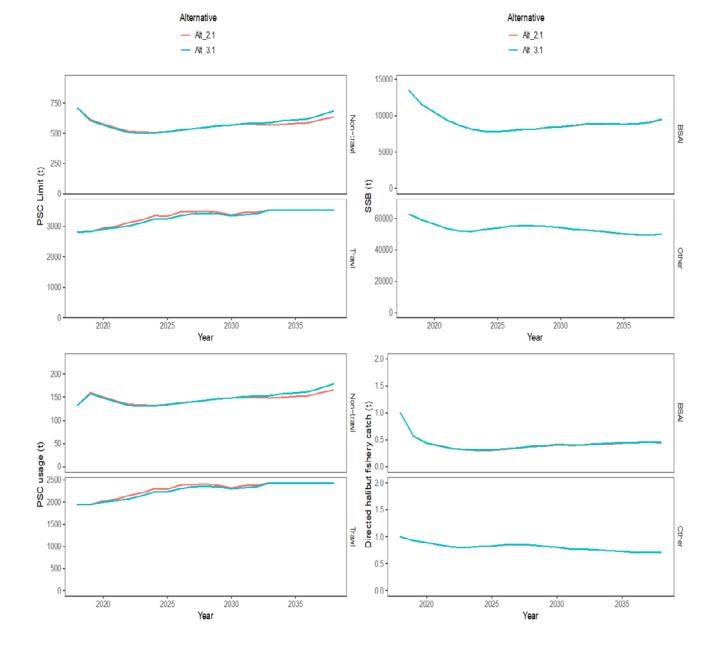


Figure 6-17. A comparison of projected PSC limits, usage, spawning biomass (SSB), and directed halibut fishery catch for Alternative 2.1 and Alternative 3.1.

Examining effects of Elements and options (3.2a, 3.2b):

Change in responsiveness

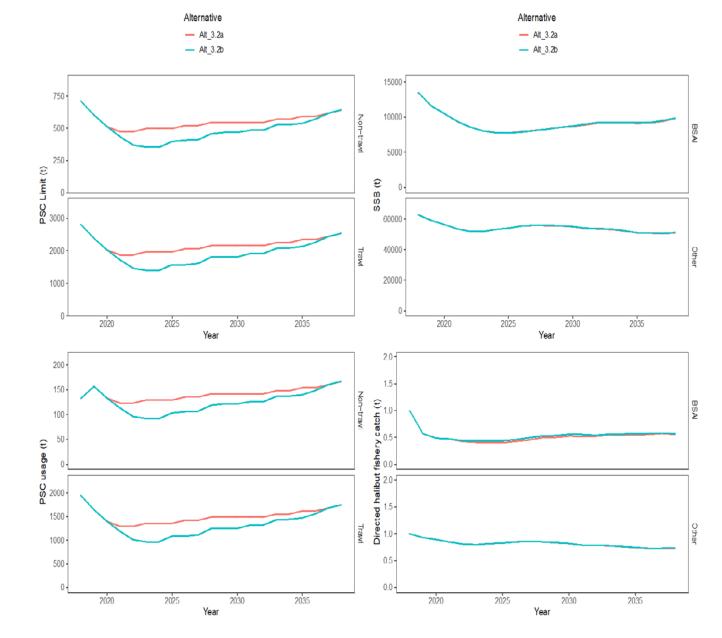
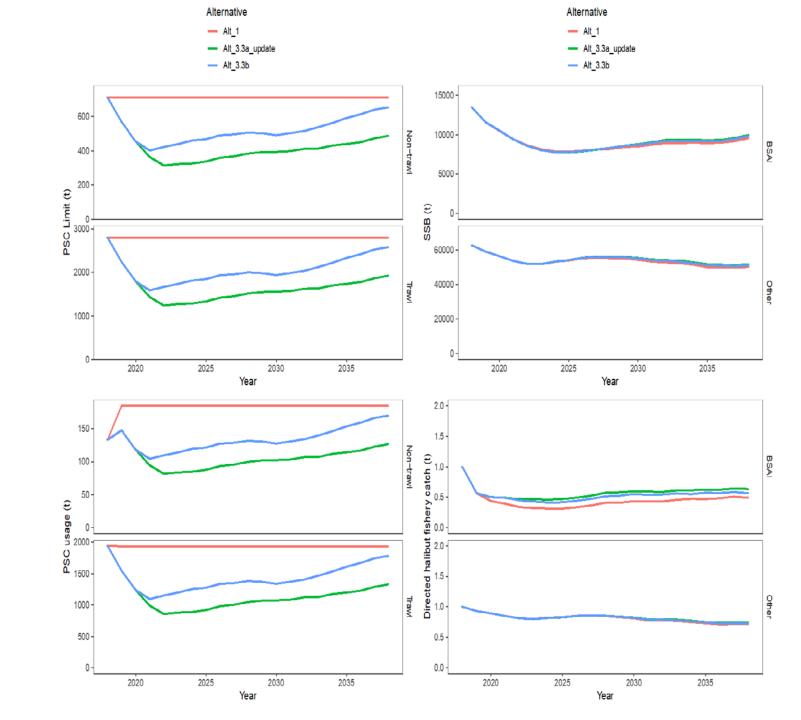



Figure 6-18. A comparison of projected PSC limits, usage, spawning biomass (SSB), and directed halibut fishery catch for Alternatives 3.2a and 3.2b.

Examining effects of Elements and options (3.3a and 3.3b):

Using the same primary index for both gear types

Fishery Impacts

Model Interpretation

- The ABM alternatives result in allocation rather than conservation
- Changes in PSC limits and halibut fishery catches are consistently in opposite directions but not in equal amounts
- No Action (Alt. 1) versus Status Quo
- Different expected constraints for Trawl and Non-Trawl

Table 6-1.Projected relative median values of PSC usage, Pacific halibut spawning biomass, and
Pacific halibut directed fishery catch, and PSC limit as estimated from the simulation
model. Values are expressed relative to status quo (Alternative 1 in row 1). Red shading
indicates a lower relative value within each measure. Note that PSC Limit is identical (in
relative terms) to PSC usage because it is in relative terms.

		PSC	Limit				PSC	Usage		
1 -	0	0	0	0] 1-	0	0	0	0	7
1a -	-33	-33	-33	-33	1a -	-33	-33	-33	-33	
1b -	-44	-44	-44	-44	1b -	-44	-44	-44	-44	
2.1 -	0	6	14	14	2.1 -	3	11	19	19	
2.1a -	1	8	15	15	2.1a -	4	14	21	20	
2.1b -	-28	-37	-32	-32	2.1b -	-28	-35	-29	-29	
2.2 -	-3	-7	-7	-3	2.2 -	-2	-3	-3	-2	
2.3 -	0	6	14	14	2.3 -	3	11	19	19	
2.4 -	-28	-40	-38	-37	2.4 -	-28	-38	-35	-35	
3.1 -	-1	3	10	13	3.1 -	1	7	15	17	
3.1a -	0	5	13	14	3.1a -	3	10	18	18	
3.1b -	-1	5	12	15	3.1b -	2	9	17	19	
3.1c -	-3	2	8	11	3.1c-	-1	7	13	15	
3.1d -	-28	-39	-34	-32	3.1d -	-28	-37	-31	-30	
3.2a -	-28	-30	-26	-23	3.2a -	-28	-30	-26	-23	Percent
3.2b -	-28	-50	-44	-35	3.2b -	-28	-50	-44	-35	change
3.3a -	-36	-60	-56	-51	3.3a -	-36	-60	-56	-51	v SQ
o 3.3b -	-36	-38	-31	-29	3.3b -	-36	-38	-31	-29	V 3Q
ativ	2020	2023	2026	2029		2020	2023	2026	2029	
terr		BSA	SSB				Halibut fis	hery catch		
Alternative	0			0	7 1-	0		-	0	0
	0	0	0	0	1 - 1a -	0 24	0	0	0 31	0
1a -		0 -1	0 0	2	1a -	24	0 27	-	31	
1a - 1b -	1	0	0		1a - 1b -		0	0 31		0 -30
1a - 1b - 2.1 -	1 1	0 -1 -2	0 0 0	2 2	1a -	24 32	0 27 36	0 31 43	31 41	0
1a - 1b - 2.1 - 2.1a -	1 1 0	0 -1 -2 0	0 0 0 0	2 2 0	1a - 1b - 2.1 - 2.1a -	24 32 0 0	0 27 36 -2 -2	0 31 43 -4	31 41 -7 -8	0 -30
1a - 1b - 2.1 - 2.1a - 2.1b -	1 1 0 0	0 -1 -2 0 0	0 0 0 0	2 2 0 0	1a - 1b - 2.1 -	24 32 0	0 27 36 -2	0 31 43 -4 -4	31 41 -7	0 -30
1a - 1b - 2.1 - 2.1a - 2.1b - 2.2 -	1 1 0 0 0	0 -1 -2 0 0 -1	0 0 0 0 -1	2 2 0 0 1	1a - 1b - 2.1 - 2.1a - 2.1b -	24 32 0 0 11	0 27 36 -2 -2 29	0 31 43 -4 -4 29	31 41 -7 -8 26	0 -30
1a - 1b - 2.1 - 2.1a - 2.1b -	1 1 0 0 0	0 -1 -2 0 0 -1 0	0 0 0 0 -1 0	2 2 0 0 1 1	1a - 1b - 2.1 - 2.1a - 2.1b - 2.2 -	24 32 0 0 11 4	0 27 36 -2 -2 29 4	0 31 43 -4 -4 29 3	31 41 -7 -8 26 -1	0 -30
1a - 1b - 2.1 - 2.1a - 2.1b - 2.2 - 2.3 -	1 0 0 0 0 0	0 -1 -2 0 0 -1 0 0	0 0 0 0 -1 0 0	2 2 0 1 1 0	1a - 1b - 2.1 - 2.1a - 2.1b - 2.2 - 2.3 -	24 32 0 0 11 4 0	0 27 36 -2 -2 29 4 -2	0 31 43 -4 -4 29 3 -5	31 41 -7 -8 26 -1 -7	0 -30
1a - 1b - 2.1 - 2.1a - 2.1b - 2.2 - 2.3 - 2.4 -	1 0 0 0 0 0 0 0	0 -1 -2 0 0 -1 0 0 -1	0 0 0 -1 0 0 -1	2 2 0 1 1 0 1	1a - 1b - 2.1 - 2.1a - 2.1b - 2.2 - 2.3 - 2.4 -	24 32 0 11 4 0 11	0 27 36 -2 -2 29 4 -2 32	0 31 -4 -4 -4 29 3 -5 34	31 41 -7 -8 26 -1 -7 33	0 -30
1a - 1b - 2.1 - 2.1a - 2.1b - 2.2 - 2.3 - 2.4 - 3.1 -	1 0 0 0 0 0 0 0	0 -1 -2 0 0 -1 0 0 -1 0	0 0 0 0 -1 0 0 0 -1	2 2 0 1 1 0 1 0	1a - 1b - 2.1 - 2.1a - 2.2b - 2.2 - 2.3 - 2.4 - 3.1 -	24 32 0 11 4 0 11 1	0 27 36 -2 -2 29 4 -2 32 -1	0 31 -4 -4 -29 3 -5 34 0	31 41 -7 -8 26 -1 -7 33 -6	0 -30
1a - 1b - 2.1 - 2.1a - 2.1b - 2.2 - 2.3 - 2.4 - 3.1 - 3.1a -	1 0 0 0 0 0 0 0 0 0	0 -1 -2 0 0 -1 0 0 -1 0 0 0	0 0 0 -1 0 0 -1 0 0	2 2 0 1 1 0 1 0 0	1a - 1b - 2.1 - 2.1a - 2.2 - 2.3 - 2.4 - 3.1 - 3.1a -	24 32 0 0 11 4 0 11 1 1 0	0 27 36 -2 -2 29 4 -2 32 -1 -1	0 31 -4 -4 29 3 -5 34 0 0	31 41 -7 -8 26 -1 -7 33 -6 -6 -6	0 -30
1a - 1b - 2.1 - 2.1a - 2.1b - 2.2 - 2.3 - 2.4 - 3.1 - 3.1a - 3.1b -	1 0 0 0 0 0 0 0 0 0 0	0 -1 -2 0 0 -1 0 0 0 -1 0 0 0 0	0 0 0 -1 0 0 -1 0 0 0	2 2 0 1 1 0 1 0 0 0	1a - 1b - 2.1 - 2.1a - 2.2 - 2.3 - 2.4 - 3.1 - 3.1a - 3.1b -	24 32 0 0 11 4 0 11 1 0 0	0 27 36 -2 -2 29 4 -2 32 -1 -1 -1 -2	0 31 -4 -4 29 3 -5 34 0 0 0 -2	31 41 -7 -8 26 -1 -7 33 -6 -6 -6 -6	0 -30
1a - 1b - 2.1 - 2.1a - 2.1b - 2.2 - 2.3 - 2.4 - 3.1 - 3.1a - 3.1b - 3.1c -	1 0 0 0 0 0 0 0 0 0 0 0 0	0 -1 -2 0 0 -1 0 0 0 -1 0 0 0 0 0	0 0 0 -1 0 0 -1 0 0 0 0 0	2 2 0 1 1 0 1 0 0 0 0 0	1a - 1b - 2.1 - 2.1a - 2.2 - 2.3 - 2.4 - 3.1 - 3.1a - 3.1b - 3.1c -	24 32 0 0 11 4 0 11 1 0 0 3	0 27 36 -2 -2 29 4 -2 32 -1 -1 -1 -2 2	0 31 -4 -4 29 3 -5 34 0 0 0 -2 3	31 41 -7 -8 26 -1 -7 33 -6 -6 -6 -6 -6 -6 -2	0 -30
1a - 1b - 2.1 - 2.1a - 2.1b - 2.2 - 2.3 - 2.4 - 3.1 - 3.1a - 3.1b - 3.1c - 3.1d -	1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -1 -2 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0	0 0 0 -1 0 0 -1 0 0 0 0 0 0 0	2 2 0 1 1 0 1 0 0 0 0 0 1	1a - 1b - 2.1 - 2.1a - 2.2 - 2.3 - 2.4 - 3.1 - 3.1a - 3.1b - 3.1c - 3.1d -	24 32 0 11 4 0 11 1 0 0 3 11	0 27 36 -2 -2 29 4 -2 32 -1 -1 -1 -2 2 30	0 31 43 -4 -4 29 3 -5 34 0 0 0 -2 3 30	31 41 -7 -8 26 -1 -7 33 -6 -6 -6 -6 -6 -6 -2 26	0 -30
1a - 1b - 2.1a - 2.1b - 2.2 - 2.3 - 2.4 - 3.1a - 3.1a - 3.1b - 3.1c - 3.1d - 3.2a - 3.2b -	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -1 -2 0 0 -1 0 0 -1 0 0 0 0 0 0 -1 -1	0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0	2 2 0 1 1 0 1 0 0 0 0 0 1 1	1a - 1b - 2.1 - 2.1a - 2.2 - 2.3 - 2.4 - 3.1 - 3.1a - 3.1b - 3.1c - 3.1d - 3.2a -	24 32 0 0 11 4 0 11 1 0 0 3 11 1 1	0 27 36 -2 -2 29 4 -2 32 -1 -1 -1 -2 2 30 27	0 31 -4 -4 29 3 -5 34 0 0 0 -2 3 30 28	31 41 -7 -8 26 -1 -7 33 -6 -6 -6 -6 -6 -6 -2 26 22	0 -30
1a - 1b - 2.1 - 2.1b - 2.2 - 2.3 - 2.4 - 3.1 - 3.1a - 3.1b - 3.1c - 3.1d - 3.2a -	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -1 -2 0 0 -1 0 0 -1 0 0 0 0 0 0 0 -1 -1 -1 -1	0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0	2 2 0 1 1 0 1 0 0 0 0 0 1 1 2	1a - 1b - 2.1 - 2.1a - 2.2 - 2.3 - 2.4 - 3.1 - 3.1a - 3.1b - 3.1c - 3.1d - 3.2a - 3.2b -	24 32 0 0 11 4 0 11 1 0 0 3 11 11 11	0 27 36 -2 -2 29 4 -2 32 -1 -1 -1 -2 2 30 27 35	0 31 -4 -4 29 3 -5 34 0 0 0 -2 3 30 28 37	31 41 -7 -8 26 -1 -7 33 -6 -6 -6 -6 -6 -2 26 22 30	0 -30

Table 6-1, p.224

Model Interpretation

- The ABM alternatives result in allocation rather than conservation
- Changes in PSC limits and halibut fishery catches are consistently in opposite directions but not in equal amounts
- No Action (Alt. 1) versus Status Quo
- Different expected constraints for Trawl and Non-Trawl

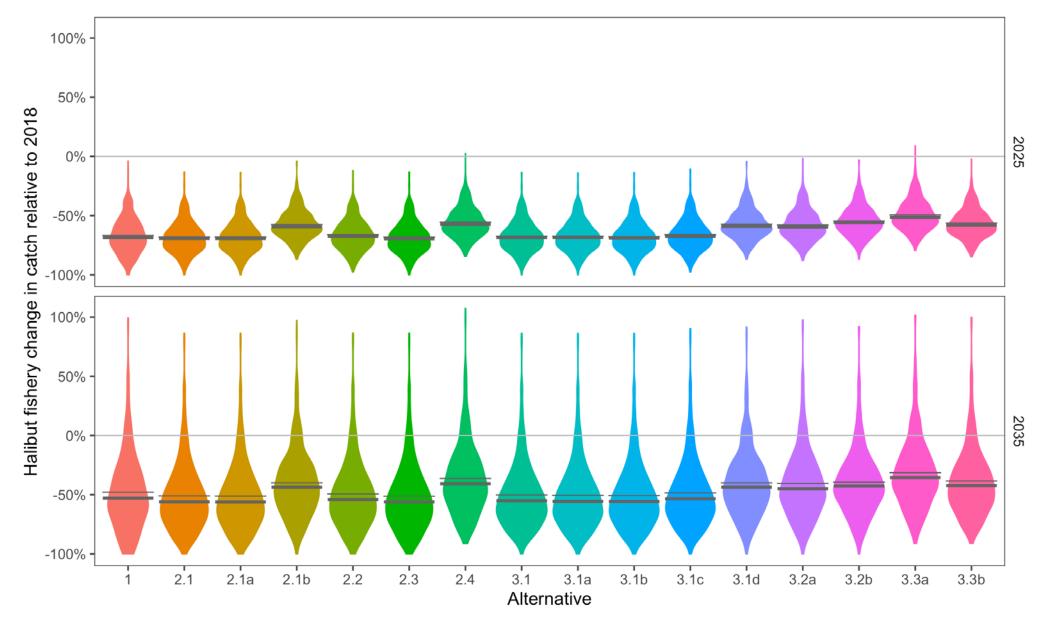


Figure 6-4, p.227

Model Interpretation

- The ABM alternatives result in allocation rather than conservation
- Changes in PSC limits and halibut fishery catches are consistently in opposite directions but not in equal amounts
- No Action (Alt. 1) versus Status Quo
- Different expected constraints for Trawl and Non-Trawl

Less than status quo limit

Less than Avg. usage	(2016-18)
----------------------	-----------

		Tr	awl	Non-trawl (NT)			
	A80	TLAS	Срб	Trawl Total	Cod	Other	NT Total
PSC allocation %	62.30%	26.60%	11.10%	100%	93.10%	6.90%	100%
Status quo limit	1,745	745	315	2,805	661	49	710
Avg. usage (2016-18)	1,307	431	153	1,892		163*	
		TT 10	670.0	Trawl	<i>a</i> 1	0.1	NT
2024	A80	TLAS	CDQ	limit	Cod	Other	limit
Alternative 1	1,745	745	315	2,805	661	49	710
Alternative 2.1	2,080	890	371	3,341	473	35	508
Alternative 2.1a	2,116	905	378	3,398	474	35	509
Alternative 2.1b	1,207	516	215	1,938	331	24	355
Alternative 2.2	1,746	747	312	2,805	442	33	475
Alternative 2.3	2,080	890	371	3,341	476	35	511
Alternative 2.4	1,334	485	202	1,822	279	21	300
Alternative 3.1	2,016	862	360	3,239	469	35	504
Alternative 3.1a	2,041	873	364	3,279	471	35	506
Alternative 3.1b	2,042	873	364	3,280	476	35	511
Alternative 3.1c	1,934	827	345	3,106	481	36	517
Alternative 3.1d	1,180	505	211	1,896	331	24	355
Alternative 3.2a	1,226	524	219	1,969	464	34	498
Alternative 3.2b	874	374	156	1,403	331	24	355
Alternative 3.3a	696	298	124	1,119	263	20	283
Alternative 3.3a update	803	343	143	1,289	303	22	326
Alternative 3.3b	1,131	484	202	1,816	427	32	459
2030	1.00	TLAC	CDO	Trawl	Col	Other	NT
2030	A80	TLAS	CDQ	limit	Cod	Other	limit
Alternative 1	1,745	745	315	2,805	661	49	710
Alternative 2.1	2,097	897	374	3,367	530	39	570
Alternative 2.1a	2,160	924	385	3,469	537	40	577
Alternative 2.1b	1,251	535	223	2,009	331	24	355
Alternative 2.2	1,746	747	312	2,805	547	41	587
Alternative 2.3	2,096	897	374	3,367	530	39	570
Alternative 2.4	1,153	493	206	1,852	323	24	347
Alternative 3.1	2,078	888	371	3,337	531	39	570
Alternative 3.1a	2,135	913	381	3,430	541	40	581
Alternative 3.1b	2,096	896	374	3,366	538	40	578
Alternative 3.1c	2,067	884	369	3,319	531	39	571
Alternative 3.1d	1,235	528	220	1,984	331	24	355
Alternative 3.2a	1,344	575	240	2,158	509	38	546
Alternative 3.2b	1,128	483	201	1,812	437	32	469
Alternative 3.3a	864	370	154	1,388	327	24	351
Alternative 3.3a update	970	415	173	1,558	367	27	394
Alternative 3.3b	1,209	517	216	1,942	457	34	491

Table 6-8, p.251

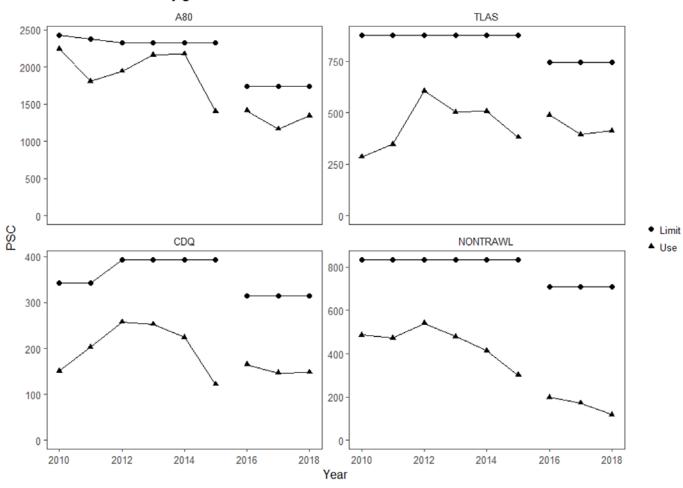
		Tr	awl	Non-trawl (NT)			
	A80	TLAS	CDQ	Trawl Total	Cod	Other	NT Total
PSC allocation %	62.30%	26.60%	11.10%	100%	93.10%	6.90%	100%
Status quo limit	1,745	745	315	2,805	661	49	710
Avg. usage (2016-18)	1,307	431	153	1,892		163*	
2024	A80	TLAS	CDQ	Trawl limit	Cod	Other	NT limit
Alternative 1	1,745	745	315	2,805	661	49	710
Alternative 2.1	2,080	890	371	3,341	473	35	508
Alternative 2.1a	2,116	905	378	3,398	474	35	509
Alternative 2.1b	1,207	516	215	1,938	331	24	355
Alternative 2.2	1,746	747	312	2,805	442	33	475
Alternative 2.3	2,080	890	371	3,341	476	35	511
Alternative 2.4	1,334	485	202	1,822	279	21	300
Alternative 3.1	2,016	862	360	3,239	469	35	504
Alternative 3.1a	2,041	873	364	3,279	471	35	506
Alternative 3.1b	2,042	873	364	3,280	476	35	511
Alternative 3.1c	1,934	827	345	3,106	481	36	517
Alternative 3.1d	1,180	505	211	1,896	331	24	355
Alternative 3.2a	1,226	524	219	1,969	464	34	498
Alternative 3.2b	874	374	156	1,403	331	24	355
Alternative 3.3a	696	298	124	1,119	263	20	283
Alternative 3.3a update	803	343	143	1,289	303	22	326
Alternative 3.3b	1,131	484	202	1,816	427	32	459
				Trawl	<i>.</i> .	~ *	NT
2030	A80	TLAS	CDQ	limit	Cod	Other	limit
Alternative 1	1,745	745	315	2,805	661	49	710
Alternative 2.1	2,097	897	374	3,367	530	39	570
Alternative 2.1a	2,160	924	385	3,469	537	40	577
Alternative 2.1b	1,251	535	223	2,009	331	24	355
Alternative 2.2	1,746	747	312	2,805	547	41	587
Alternative 2.3	2,096	897	374	3,367	530	39	570
Alternative 2.4	1,153	493	206	1,852	323	24	347
Alternative 3.1	2,078	888	371	3,337	531	39	570
Alternative 3.1a	2,135	913	381	3,430	541	40	581
Alternative 3.1b	2,096	896	374	3,366	538	40	578
Alternative 3.1c	2,067	884	369	3,319	531	39	571
Alternative 3.1d	1,235	528	220	1,984	331	24	355
Alternative 3.2a	1,344	575	240	2,158	509	38	546
Alternative 3.2b	1,128	483	201	1,812	437	32	469
Alternative 3.3a	864	370	154	1,388	327	24	351
Alternative 3.3a update	970	415	173	1,558	367	27	394
Alternative 3.3b	1,209	517	216	1,942	457	34	491

Factors affecting PSC encounter & use

Environmental

- Halibut abundance
- Co-location
- Spatial distribution

Regulatory


- GF TACs & 2M mt cap
- Sector and intra-sector target portfolios
- Spatial/temporal constraints
- DMR

Operational

- Avoidance measures
- Catch handling
- Species targeting and timing (A80)
- Vertical integration

Operational decisions have costs

- Search time looking for grounds with lower halibut bycatch
- Fishing lower CPUE areas because there are fewer halibut
- Changing catch handling techniques (deck sorting)
- Any change from standard fishing operations imposed to reduce halibut PSC

PSC limit and use by groundfish sector 2010-2018

- Relationship between PSC limit and use varies
- How would use change under different PSC limits?
- Past groundfish value per PSC ton is not predictive of future

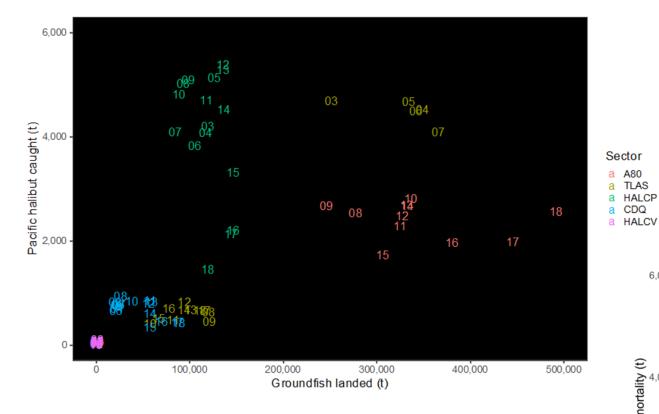
Figure 6-20, p.252

Figure 6-20. PSC limits and PSC use by groundfish sector 2010-2018. Gap in x-axis represents implementation of Amendment 111 and related PSC limit reductions. Note y-axis differs in each panel.

Forgone groundfish revenue

Relationship between groundfish revenue and <u>PSC</u> is unclear and unpredictable

Revenue factors can be independent of PSC use


- Catch composition
- Markets
- Season
- TAC

Environmental and regulatory factors influence PSC encounter & use

			Average annual						
	Sector	PSC Limit	PSC Use	PSC Use:Limit	Groundfish \$/ t PSC use	Non-pollock groundfish revenue			
						8			
Pre A111	A80	2,325	1,923	0.83	155,398	298,869,286			
(2012-2015)	TLAS	875	500	0.57	195,375	97,590,011			
	CDQ	393	214	0.55	324,076	69,433,362			
	NON TRAWL	833	434	0.52	403,020	174,809,718			
Post A111	A80	1,745	1,307	0.75	244,624	319,805,750			
(2016-2018)	TLAS	745	431	0.58	252,708	109,001,276			
	CDQ	315	153	0.49	506,379	77,644,765			
	NON TRAWL	710	163	0.23	1,151,011	187,614,773			
Difference	A80	-580	-616	-0.08	89,226	20,936,464			
(post - pre)	TLAS	-130	-68	0.01	57,332	11,411,265			
	CDQ	-78	-61	-0.06	182,303	8,211,403			
	NON TRAWL	-123	-271	-0.29	747,991	12,805,055			

Table 6-9. PSC limits, annual averages of PSC use, groundfish revenue per ton of PSC use and gross non-pollock groundfish revenue before and after A111 and the differences between these periods.

Table 6-9, p.255

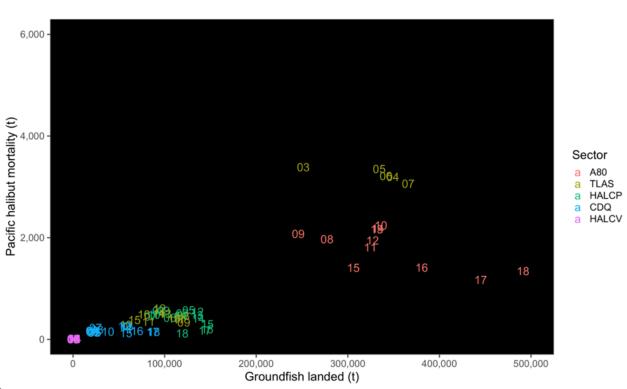
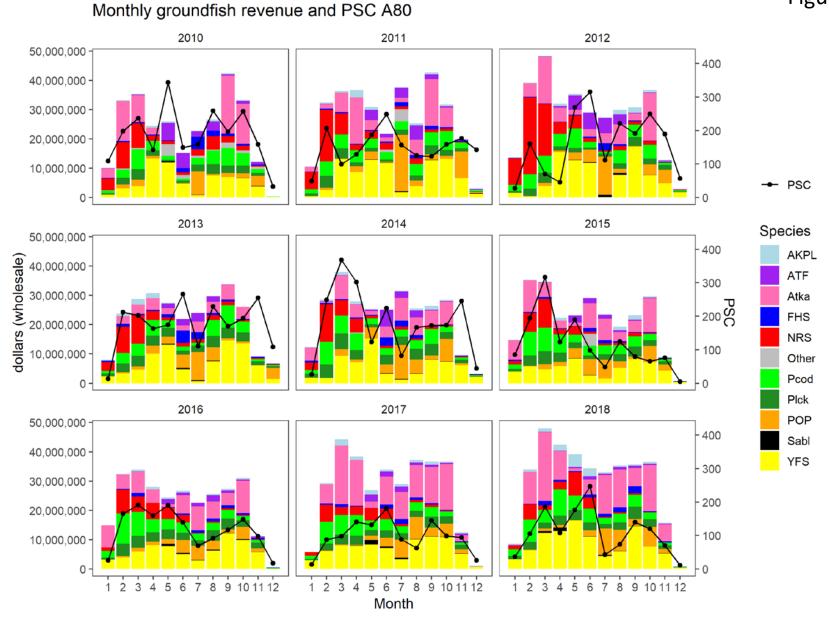



Figure 3-47. Bycatch of Pacific halibut (t) versus groundfish catch (horizontal axis) by sector (colors) and year (labels) for catch (top) and mortality (bottom). Note that data are from 2003-2018 (hence A80 pooled with TLAS prior to 2008).

Figure 3-77, p.177

Pacific Halibut catch, A80 sector

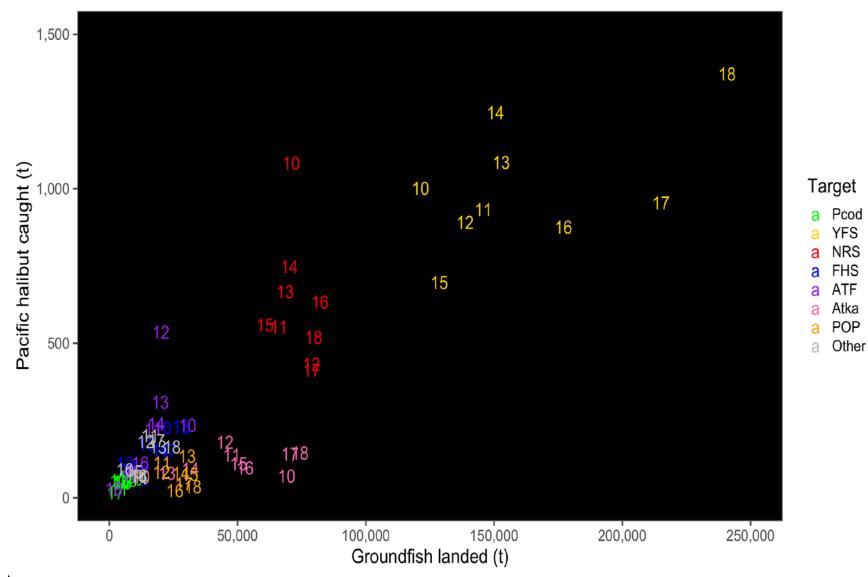
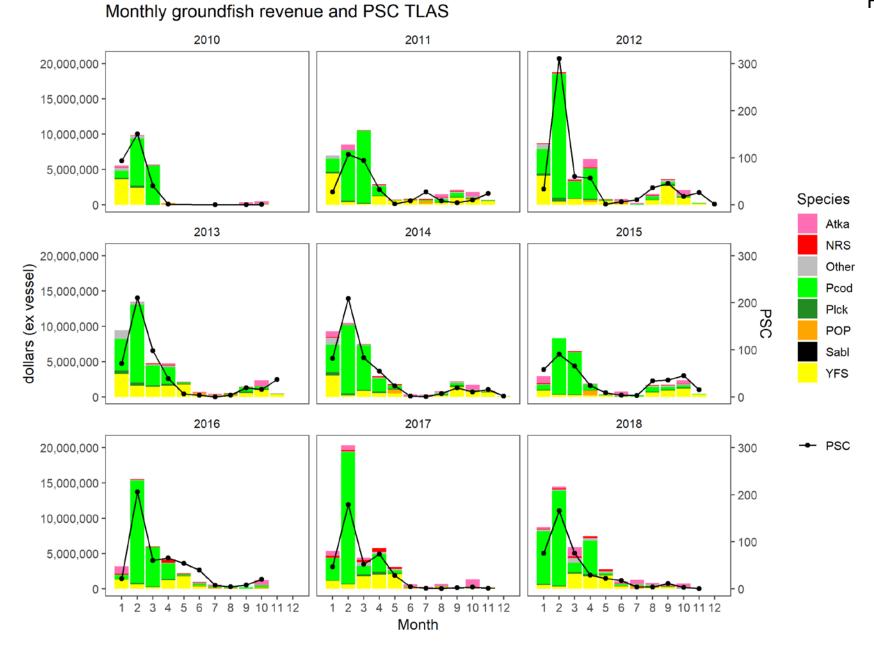
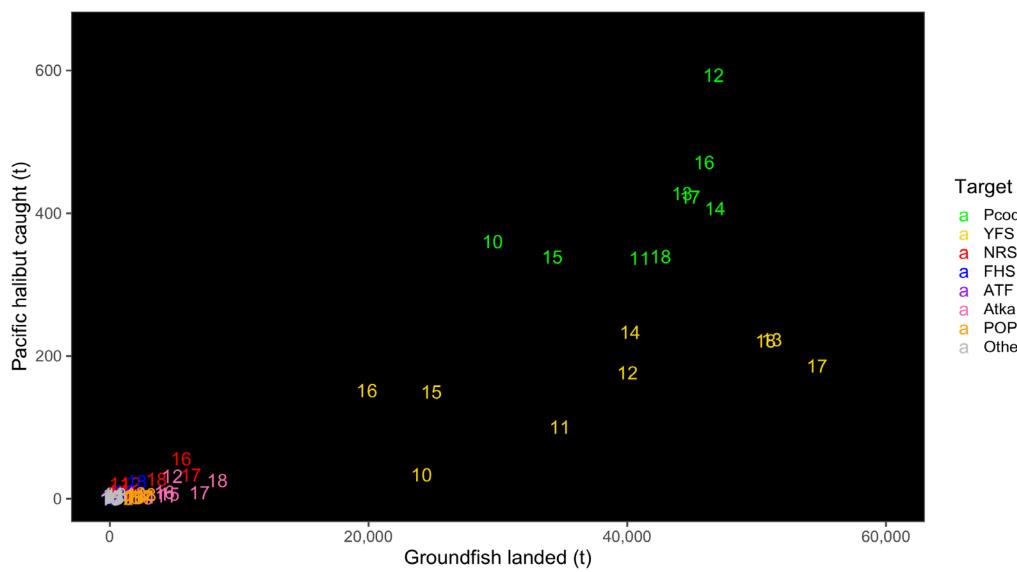




Figure 3-77, p.177

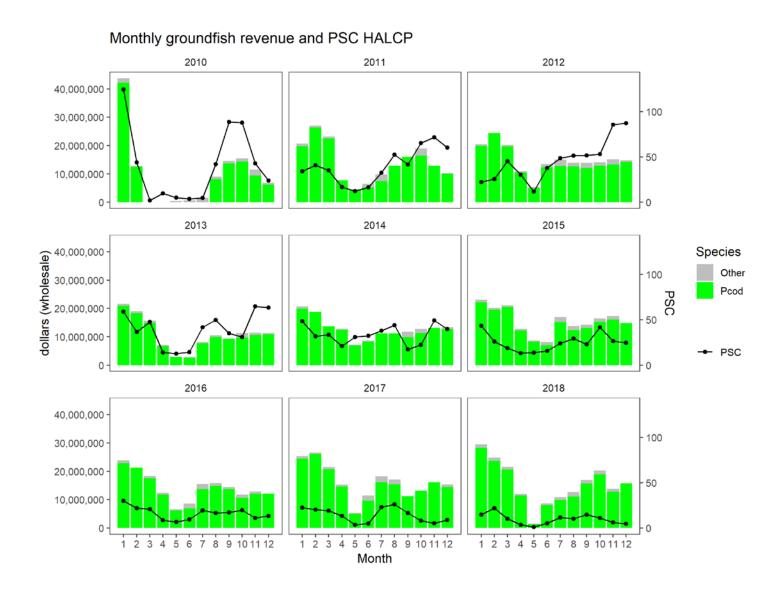
Pacific Halibut catch, TLAS sector

μ.

Pcod

YFS

NRS


FHS

ATF

Atka

POP

Other

Pacific Halibut catch, HALCP sector

TargetaPcodaATFaPOPaOther

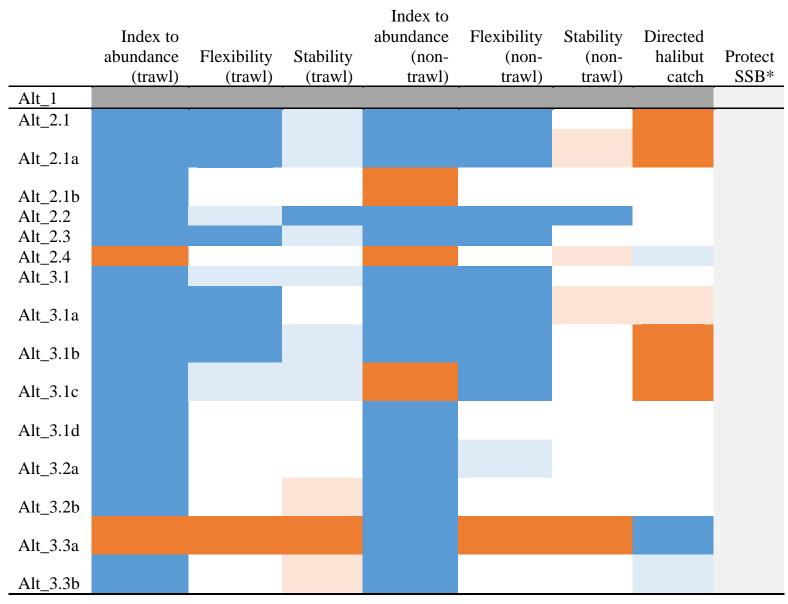
Halibut Fishery

- Model results (Table 6-1, p.224)
- Spectrum of harvest engagement (Section 4.4.1)
- Relative dependence of shore-based processors (Section 4.4.2)
- Discard mortality in the commercial halibut fishery (Table 4-11, p.205)
- Shifting distribution of benefits around a PSC limit ceiling or floor
- CDQ groups as direct participants in both groundfish and halibut, with multiple modes of use

NORTH PACIFIC FISHERY MANAGEMENT COUNCIL

www.npfmc.org

Performance metrics relative to Council objectives


Overall performance metrics: Evaluate how alternatives meet Council's objectives

- Halibut PSC limits should be indexed to halibut abundance
- There should be flexibility provided to avoid unnecessarily constraining the groundfish fishery particularly when halibut abundance is high
- Provide for some stability in PSC limits on an inter-annual basis.
- Provide for directed halibut fishing operations in the Bering Sea.
- Halibut spawning stock biomass should be protected especially at lower levels of abundance

General trends summarized for 20 year simulations

Detailed results are contained in Table 6-2 through Table 6-4.

Metric = best value
Biomass= high correlation
Metric = metric was somewhat met but did not produce the 'best' value
Metric= worst value for that metric
Biomass= low correlation
Metric= improvement over the worst value but still in a lower
range

Key discussions and decision points for the Council meeting

- Review the suite of Alternatives and provide any revisions as desirable. Key considerations include:
 - Do these Alternatives as currently constructed meet the intent of the Council's action?
 - Could complexity and redundancy be reduced and still address the Council's intent?
- Review the halibut simulation model, including analytical assumptions and application for purposes of informing the Council's policy decisions for this analysis.
- Review the suite of draft performance metrics and revise as needed. Revised performance metrics may better characterize results across alternatives to indicate where they address conflicting Council objectives.

Thank you

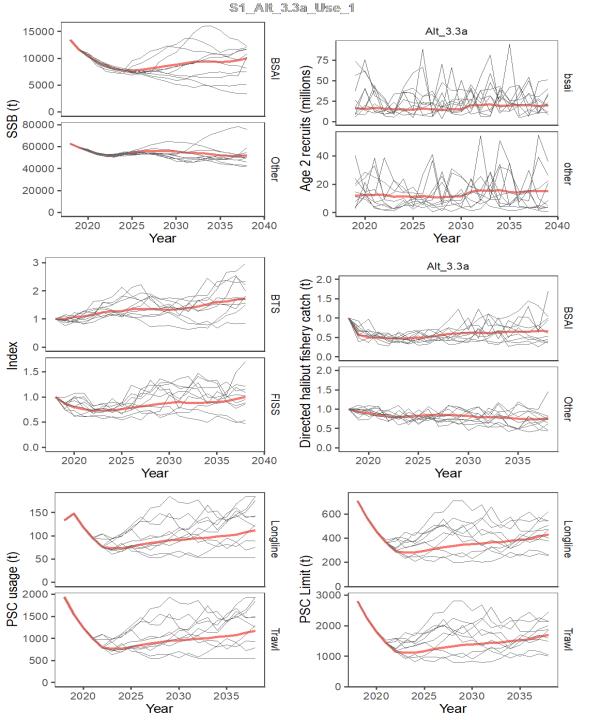
General results

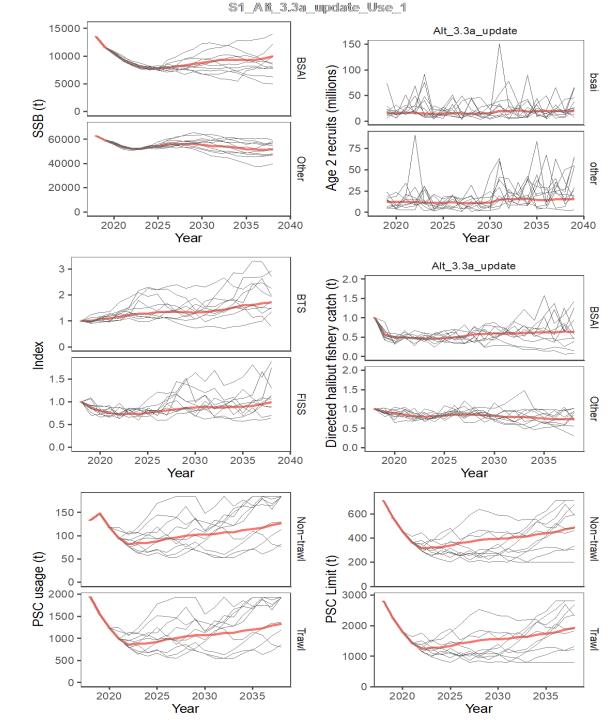
- PSC and directed halibut fishery catch are most sensitive to the starting point value.
- The additional constraint of Element 6 = slow trajectory to low starting point values when starting at the 2018 value.
- Floors and ceilings further dampen variability
 - some of the Alternatives result in control rules which are stuck on floors and ceilings.

General results (ctd.)

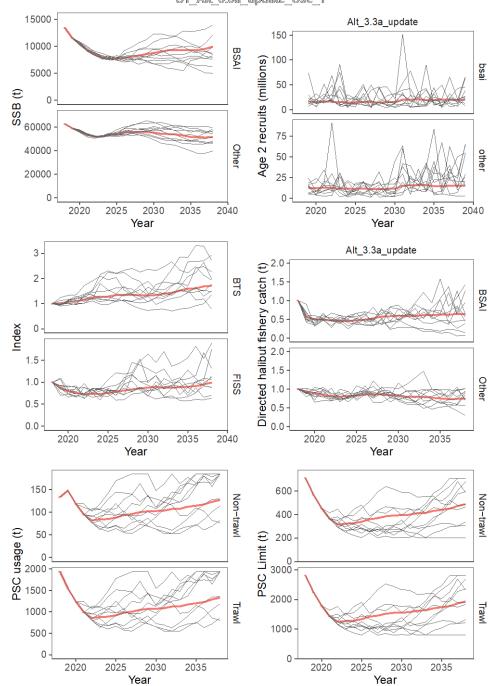
- Most trawl and non-trawl PSC limits are highly correlated with the indices that were used as the primary index for those limits.
 - Where PSC limits do not track abundance closely due to additional constraints that limit variability
- Impacts to spawning stock biomass (SSB) in the BSAI is minimal across all alternatives
- SSB does decline when very high PSC levels (10,000 t)
- Limited impact on the overall performance from the addition of a secondary index but adds variability in PSC limits and usage.
- Features of the control rules are more influential than combining two indices under the current trajectory of SSB simulated.

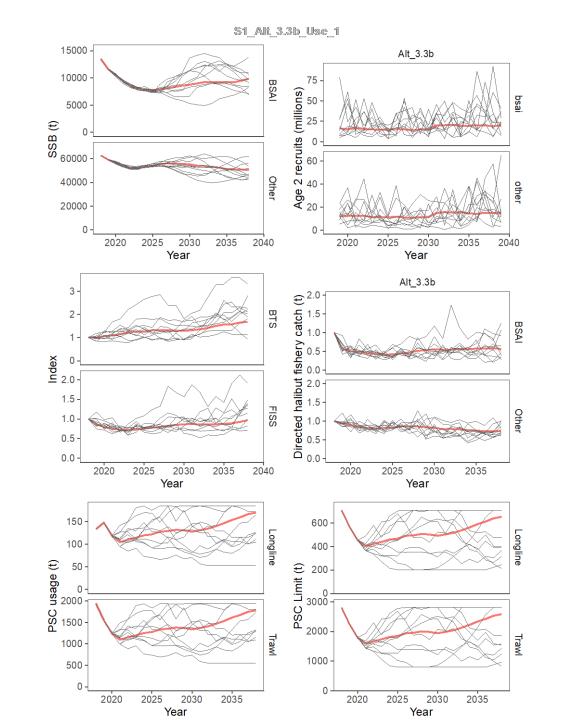
General results (ctd.)


- Trade-off between PSC usage and halibut fishery catch
- Halibut fishery catch limits are reduced from 2018 levels due to declines in the SSB trajectory.
- Different model validation scenario with increase in SSB may show an increase in halibut fishery catch relative to 2018 levels.


General results (ctd.)

- Non-Trawl PSC limits for 2024 and 2030 are reduced from current limits
 - reductions from current PSC limits, not represent reductions from recent PSC use.
- The 2030 non-trawl PSC limits are generally larger than those in 2024
 - spawning biomass (and thus the setline trend) stabilizes in the BSAI and show a very slight increase between 2025 and 2030.
- Trawl fishery receives reductions in PSC limits under 7 of the 15 calculated alternatives


Additional questions?


Results of simulation modeling (Appendix)

S1_Alt_3.3a_update_Use_1

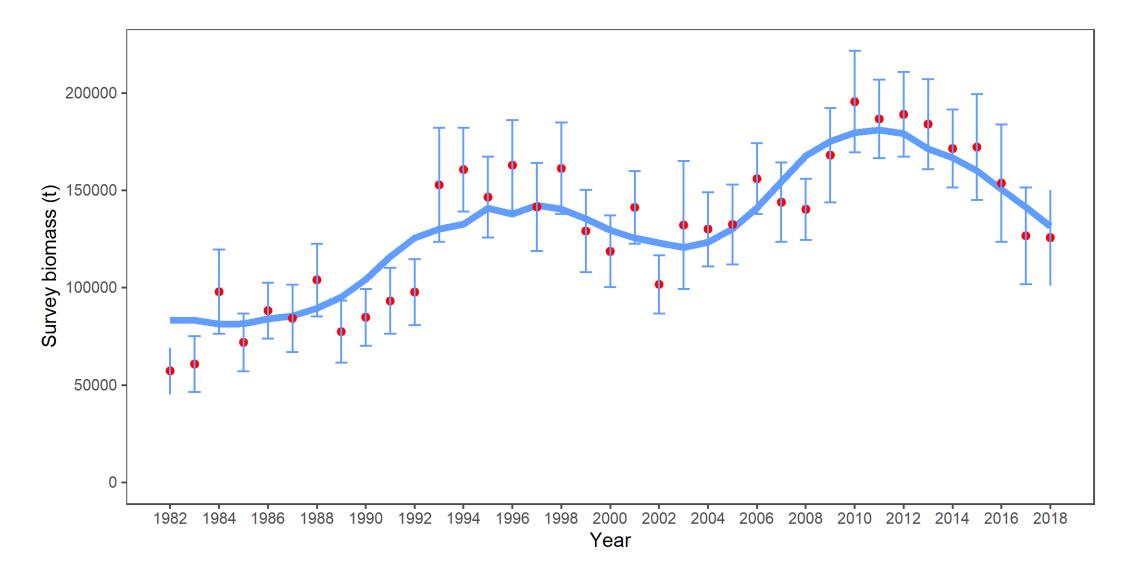


Figure A3-2. The BSAI sub-model (thick blue line) conditioned to fit to the observed BTS biomass index (red dots). Vertical lines show 95% asymptotic intervals about the observed BTS biomass index point estimates.

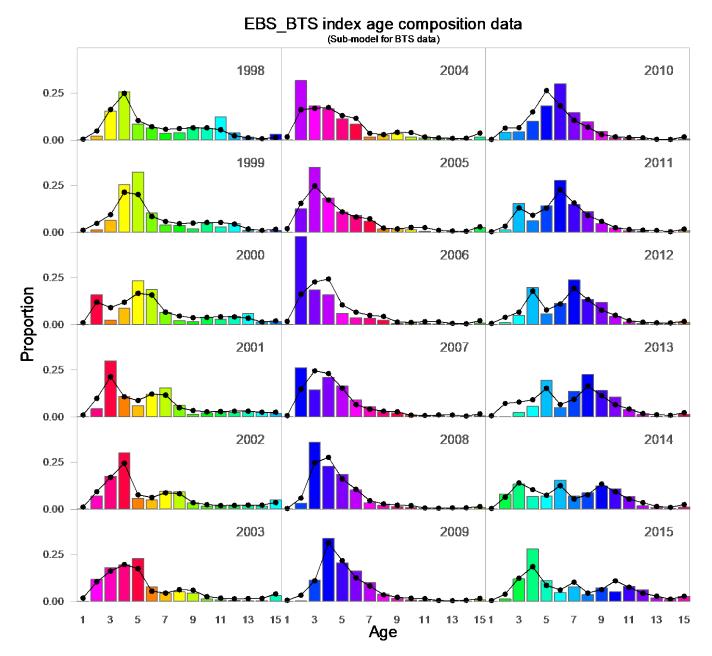


Figure A3-3. The BSAI sub-model conditioned to fit the available yearly BTS age composition data (data are shown as the multi-color frequency histogram, model fits to data are indicated by black dots and line).

PSC limits are (mostly) correlated to halibut biomass

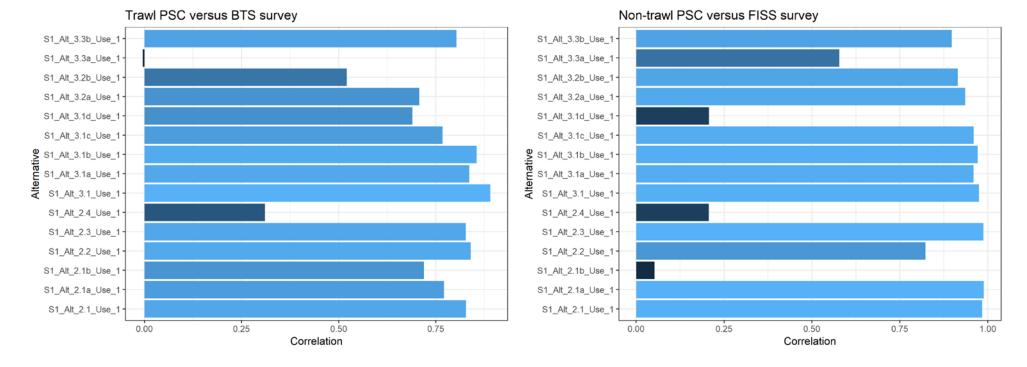
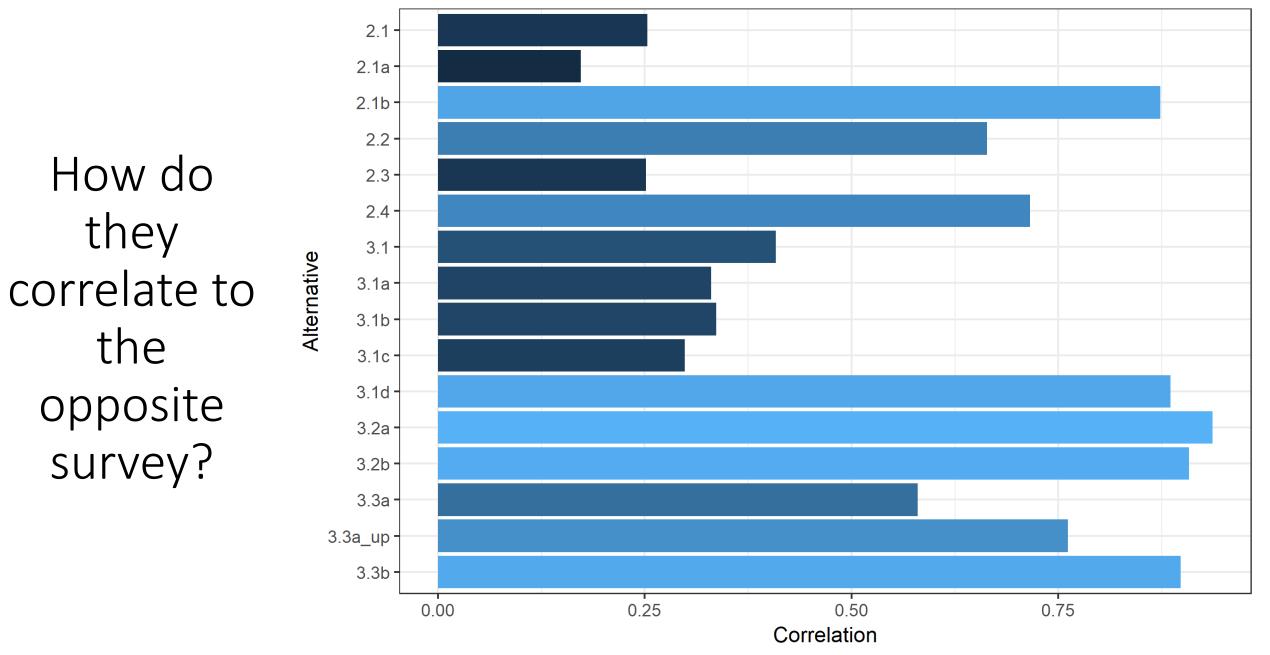
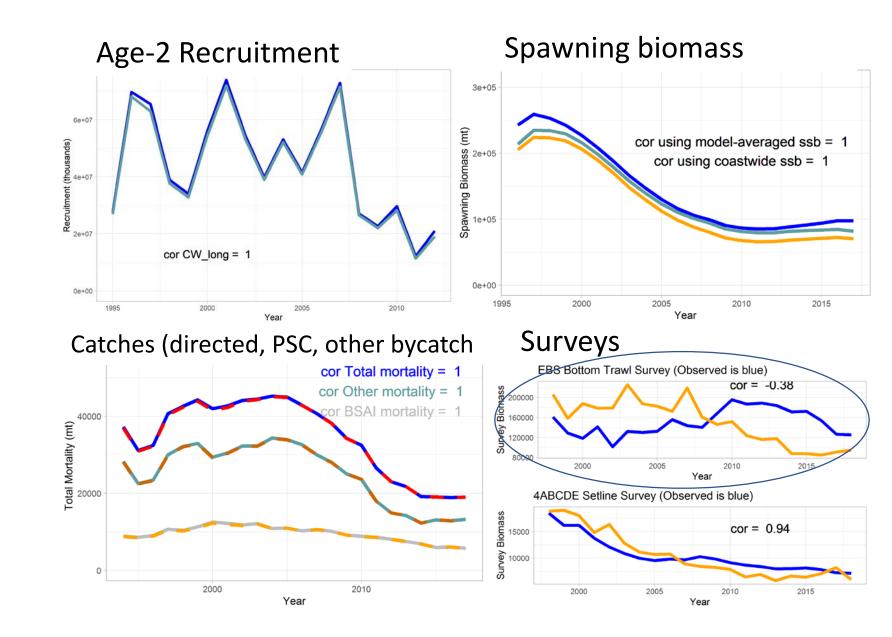



Figure 6-8. Correlations of PSC limits with their respective gear type indices across alternatives for the trawl fishery (left) and the non-trawl fishery (right).

Trawl PSC versus FISS survey


Non-trawl PSC versus trawl survey

2.1 2.1a · 2.1b-2.2 How do 2.3 they 2.4 -3.1 correlate to Alternative 3.1a 3.1bthe 3.1c opposite survey? 3.1d · 3.2a -3.2b 3.3a 3.3a_up -3.3b -0.5 -0.5 0.0 Correlation

Features

- 25 years, 1994-2018
- 5 gear types
- Recruitment deviations from IPHC
- Conditioned on coastwide IPHC assessment

Details in appendix 3

BSAI-specific relative recruitment estimates

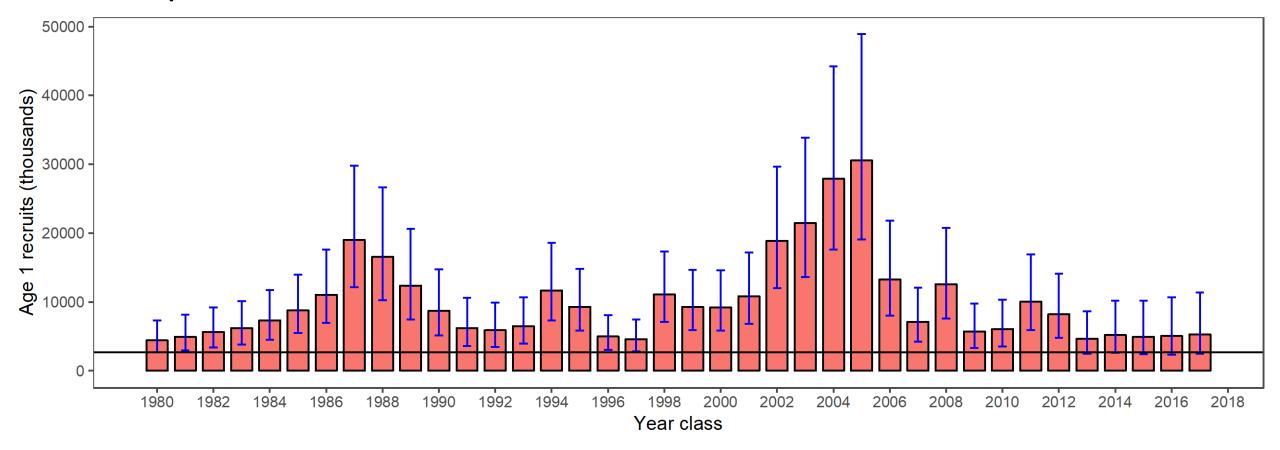
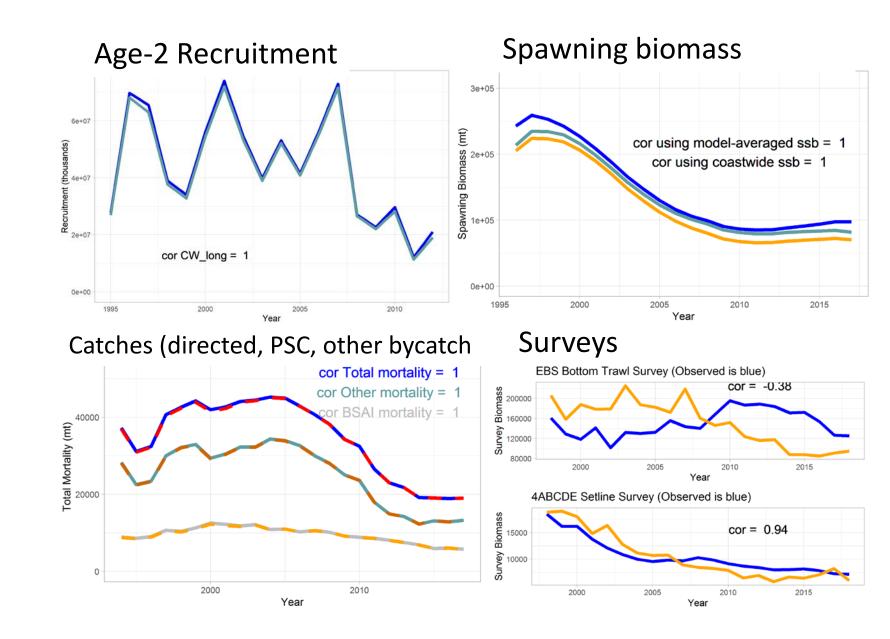
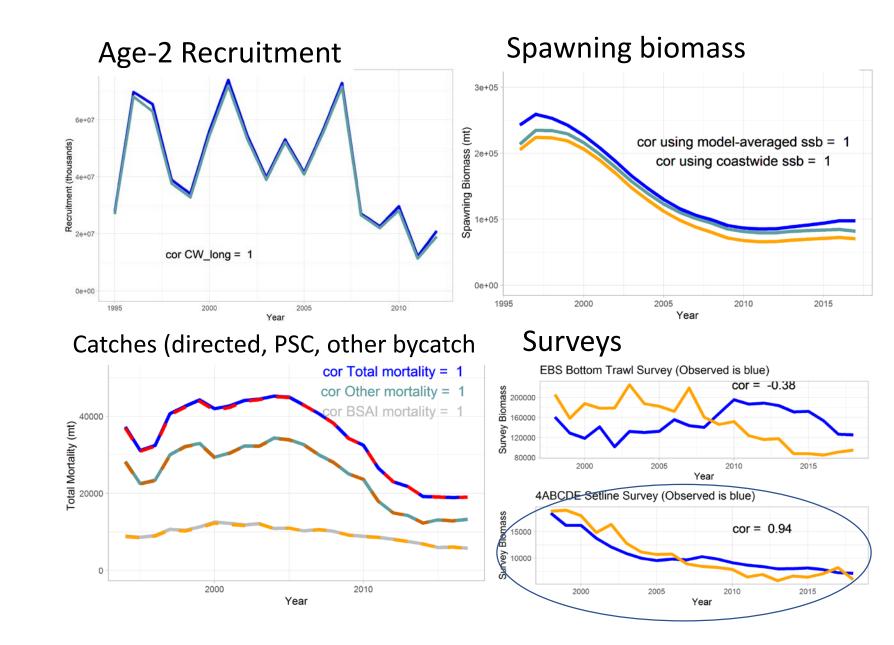
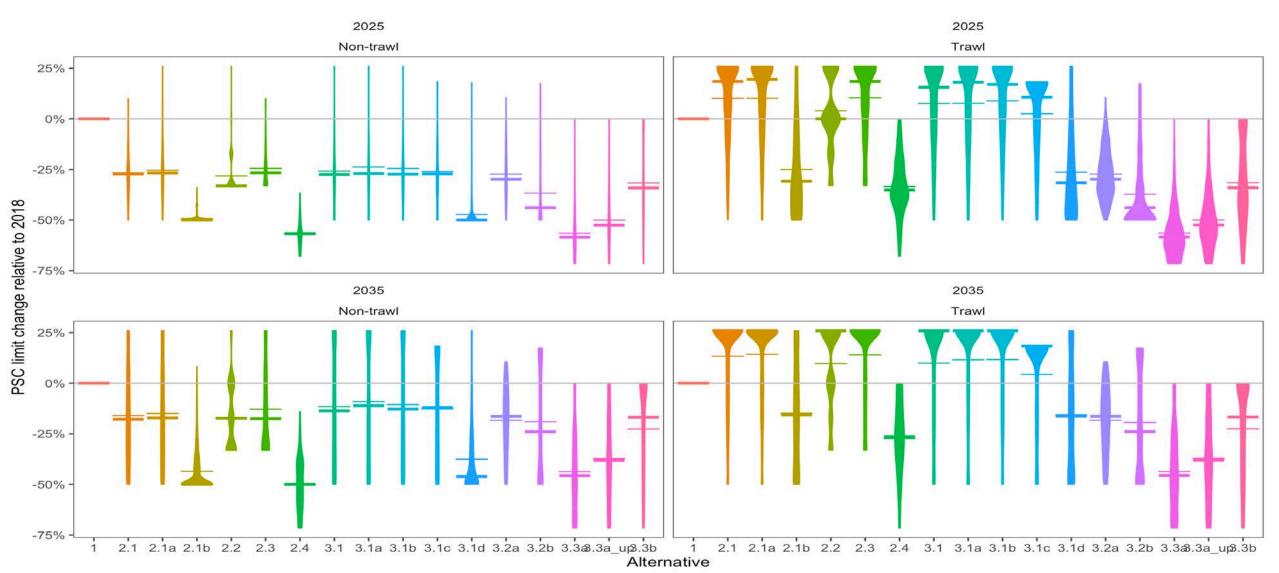



Figure A3-4. Age-1 Recruitment estimates from the BSAI sub-model. These relative values were used to evaluate the process error component of the BTS in OM projections relative to the OM conditioned to mimic the 2018 coastwide long assessment by the IPHC.

Features

- 25 years, 1994-2018
- 5 gear types
- Recruitment deviations from IPHC
- Conditioned on coastwide IPHC assessment


Details in appendix 3


Features

- 25 years, 1994-2018
- 5 gear types
- Recruitment deviations from IPHC
- Conditioned on coastwide IPHC assessment

Details in appendix 3

- BSAI PSC limits relative to 2018 value in 2025 and 2035
- Compare across alternatives
- Thick and thin horizontal bars: median and mean
- Thickness of vertical lines show number of simulations at a particular % change

