An age-structured assessment model for yelloweye rockfish (Sebastes ruberrimus) in Southeast Alaska Outside Waters

Kray Van Kirk Alaska Dept. of Fish and Game

> Andrew Olson Ben Williams Jennifer Stahl Kamala Carroll

Southeast Alaska Outside Waters

Data updated through 2015

- 1. Total annual catch:
 - Commercial fishery, sport fishery, halibut fishery bycatch
- 2. Age composition:
 - Commercial fishery, halibut fishery bycatch
- 3. Density:
 - ROV survey

Structural changes

- 1. Terminal plus-class changed from 97+ to 75+
- 2. Natural mortality is estimated
- 3. CPUE scaled
- 4. Lower 90% CI for model-estimated biomass, F_{xx^\prime} and ABC used when evaluating potential harvest levels
- 5. Additional sigma parameter for density from last year's assessment removed due to confounding with estimating natural mortality

Changes to model structure

- Plus-class changed from 97+ to 75+
- number of age classes was reduced
- proportion of individuals in the plus-class did not exceed any sub-plus-class age proportion

Model 1: 1. Regionally-distinct data and likelihood; 2. Asymptotic fishery selectivity-at-age	Model 2: 1. Regionally-distinct data and likelihood; 2. Common parameters: a. natural mortality b. commercial fisheries catchability c. IPHC survey catchability 3. Asymptotic fishery selectivity-at-age
 Model 3: 1. Regionally-distinct data and likelihood; 2. Common parameters: a. natural mortality b. commercial fisheries catchability c. IPHC survey catchability 3. Dome-shaped fishery selectivity-at-age option 	 Model 4: (global) 1. Data and likelihood merged over regions; 2. Common parameters: a. natural mortality b. commercial fisheries catchability c. IPHC survey catchability d. mean age-8 recruitment e. mean year-1 abundance f. sigma for year-1 abundance deviation vector g. mean full-recruitment fishing mortality h. selectivity curve parameters i. annual deviation vectors for recruitment, abundance, and fishing mortality

Alternative structures

Multivariate logistic likelihood for age composition Partitioning global dataset to fit regional likelihoods Spawner-recruit curves Global recruitment partitioned into region-specific recruitment

Results: Regional density

Results: Regional recruitment

Results: Regional spawning biomass

Results: Fishery selectivity

Results: Catch-age residuals - SSEO

Results: Commercial fisheries CPUE

Natural mortality M					
Model 1	Model 2	Model 3	Model 4		
CSEO - 0.0831					
SSEO - 0.0804	0.0850	0.0798	0.0791		
EYKT – 0.0915					

Commercial fishery CPUE catchabilityModel 1Model 2Model 3Model 4CSEO – 0.0697

SSEO - 0.1233 0.0927 0.0858 0.0341

EYKT - 0.1431

Full-recruitment F_{45}					
Model 1	Model 2	Model 3	Model 4		
CSEO - 0.1203	0.1263	0.111			
SSEO - 0.1562	0.1736	0.154	0.1331		
EYKT – 0.3271	0.2636	0.2225			

IPHC survey CPUE catchability					
Model 1	Model 2	Model 3	Model 4		
CSEO - 0.0464					
SSEO - 0.0396	0.0405	0.0406	0.0117		
EYKT - 0.0363					

Deviance Information Criterion

DIC values for all models from 2,000	,000 MCMC i	terations, saving every 100th	
MODEL ONE		MODEL THREE	
Expectation of log-likelihood	11797	Expectation of log-likelihood	11724
Expectation of theta	13421	Expectation of theta	11787
Number of estimated parameters	439	Number of estimated parameters	441
Effective number of parameters	-1624	Effective number of parameters	-63
DIC	10173.5	DIC	11661
MODEL TWO		MODEL FOUR (Global)	
Expectation of log-likelihood	11814	Expectation of log-likelihood	9743
Expectation of theta	13482	Expectation of theta	10374
Number of estimated parameters	433	Number of estimated parameters	149
Effective number of parameters	-1667	Effective number of parameters	-632
DIC	10147	DIC	9111

Self-test

Retrospective analysis: density

Retrospective analysis: age 8 recruitment

Retrospective analysis: spawning biomass

- 1. Evaluated root mean-squared error (RMSE) for density surveys inside model structure with no extra variance term;
- 2. Used the fixed RMSE as additional variance term

$$\sigma_{dens}^2 = \log(1 + (\sigma_{distance} + rmse) / obs_den^2)$$

DIC values for all models from 2,000,000 MCMC iterations, saving every 100th			
RMSE Global model		Global model	
Expectation of log-likelihood	6644	Expectation of log-likelihood	9743
Expectation of theta	6928	Expectation of theta	10374
Number of estimated parameters	149	Number of estimated parameters	149
Effective number of parameters	-283	Effective number of parameters	-632
DIC	6361	DIC	9111

Natural mortality

Global: 0.791 RMSE: 0.467

Model Results: Comparisons

Global model: density retrospective

Model Results: Comparisons

RMSE global model retrospective: density

Spawning biomass projections

<i>F</i> level	Biomass (metric tons)	ABC	ABC (metric tons)
? _{??} (0.060)	L 90% CI (11,317)	Point-estimate	554
? _{??} (0.049)	L 90% CI (11,317)	Point-estimate	454
? _{??} (0.041)	L 90% CI (11,317)	Point-estimate	382
L 90% Cl of ??? (0.032)	L 90% CI (11,317)	Point-estimate	309
L 90% CI of ? _{??} (0.027)	L 90% CI (11,317)	Point-estimate	253
L 90% Cl of ??? (0.022)	L 90% CI (11,317)	Point-estimate	207
? _{??} (0.060)	Point-estimate (11,697)	L 90% CI	314
? _{??} (0.049)	Point-estimate (11,697)	L 90% CI	263
? _{??} (0.041)	Point-estimate (11,697)	L 90% CI	216
$\overline{\mathbf{CURRENT}\mathbf{ABC}(F=0.$	02, assumes no selectivity)		218

If the RMSE-modified global model is accepted for purposes of management advice, the author recommends reducing harvest levels to *F*_{??} and using the lower 90% confidence interval of the model-estimated ABC to set catch levels, which produces an ABC level for 2016 of 216 metric tons, which is essentially equivalent to the ABC of 218 metric tons under current management methods.

- 1. Determine best approach for incorporating density uncertainty;
- 2. Re-analyze ADF&G survey data for global model;
- 3. Explore alternative methods for ROV survey adaptive-cluster sampling for relative density zones across habitat

