ASSESSMENT OF THE DEMERSAL SHELF ROCKFISH STOCK COMPLEX IN THE SOUTHEAST OUTSIDE SUBDISTRICT OF THE GULF OF ALASKA

Phil Joy, ADF&G – Commercial Fisheries Division Jane Sullivan, NOAA – Alaska Fisheries Science Center Rhea Ehresmann, ADF&G – Commercial Fisheries Division Andrew Olson, ADF&G – Commercial Fisheries Division Mike Jaenicke, ADF&G – Sport Fish Division

GOA Southeast Alaska Outside (SEO) Demersal Shelf Rockfish (DSR)

- I. History of SEO DSR assessment
- II. Summary of 2022 assessment efforts
- III. Status-quo methods
- IV. Random effects models
- V. Risk table
- VI. Recommendations

GOA Southeast Alaska Outside (SEO) Demersal Shelf Rockfish (DSR)

- DSR Complex: Yelloweye, quillback, copper, rosethorn, China, canary and tiger

 Yelloweye: Tier 4 (move to Tier 5)
 Other DSR: Tier 6
- Yelloweye > 95% DSR catch
- Managed by state of Alaska
- Management based on biomass estimates of yelloweye rockfish
- Directed commercial fishing closed since 2020
- Sport fishing restrictions since 2020

SEO DSR Assessment History

- Status-quo methods for over a decade
 - Yearly justification of using lower 90% CI to establish targets
- Age-structured assessment attempted in 2015
 - Issues with fit, stability and uncertainty
 - High sensitivity to M
 - Lack of recruitment signals
- Random effects model in 2013 and 2015
 - Still aimed to use lower 90% Cl
 - Greater uncertainty and lower targets than status-quo
 - Models rejected

2022 Assessment

- 1. Standardize status-quo methods
- 2. Random effect model updated
 - Spatially stratified
 - IPHC CPUE index as secondary
- 3. Harvest reconstruction
 - Developing methods to estimate unobserved discards in the halibut fishery
- 4. State-space surplus production model
 - Development
 - Risk analysis

September Plan Team Recommendations:

OFL and ABC

Research Model CIE review in 2023

Current Management

- 4 management areas
- Submersible/ROV surveys = Yelloweye density at management area level (1 area/ year)
- Biomass = Density*Weight*Habitat (km²)
- SEO Biomass = Σ (most recent density estimates*updated weight data*Habitat)
- Assumed natural mortality M
- $F_{OFL} = M = 0.032$
- Max $F_{ABC} = M = 0.026$
- Rec $F_{ABC} = M = 0.02$

* Biomass lower 90% confidence interval

Current Management

- 4 management areas
- Submersible/ROV surveys = Yelloweye density at management area level (1 area/ year)
- Biomass = Density*Weight*Habitat(km²)
- SEO Biomass = Σ (most recent density estimates*updated weight data*Habitat)
- Assumed natural mortality M
- $F_{OFL} = M = 0.032$
- Max $F_{ABC} = M = 0.026$
- Rec $F_{ABC} = M = 0.02$

- VI
 0 25 50 100 Kiometers

 Plan Team: Where'd these numbers come from?
- * Lower 90% Confidence Interval
- Green et al. 2015

- Distance sampling methodology using ROV surveys
- Transect locations randomly selected
- Sample size based on encounter rate and desired precision (< 15%)
 - At least 20 transects (each ~ 1 km
 - At least 80 fish total
- Dives recorded on stereoscopic cameras

Catch History

Video review:

Numbers of yelloweyes and their distance from ightarrowtransect line

- Distance sampling methods applied using *Distance* package in R:
- Data fit to detection function describing probability that a fish is observed given it's distance from transect line

- Distance Sampling Methods (Distance package in R):
- Data fit to detection function describing probability that a fish is observed given it's distance from transect line

- Final density estimate from model averaging (Thomas et al. 2010)
- Multiple models with similar AICc (delta AICc < 6) = uncertainty in true shape of detection function
- Bootstrap procedure
 - 1. Resample transects with replacement
 - 2. Fit candidate models to bootstrap sample
 - 3. Pick "best" model based on AICc
 - 4. Save density
 - Model averaged density = average of bootstrap densities and CV from sd of bootstrap estimates

Biomass estimate

- Density (+ variance)
- * Avg. weight of yelloweye from portside sampling (+ variance)
- * Estimate of yelloweye habitat (no variance)
- = Management Area Biomass
- High interannual variability; unlikely for long lived species

Biomass est.

SEO Biomass = Σ (most recent density estimates*updated weight data*Total Habitat)

- Uncertainty in calculations?
- Amount of habitat
- Application of density to areas

Random Effects Model

- Assess biomass across management areas
- Biomass estimated as a series of random effects
 - Process error parameters constrained using random walk model
 - —Accommodates data gaps (missing years)
- Management area ROV biomass estimates
- IPHC survey CPUE as secondary abundance index (management area scale)
- Extra variance (observation error) on ROV biomass
- AIC and visual examination to assess fit and compare models
- *rema* package in R

Random Effect Models

Model	IPHC CPUE	Extra variance in biomass	ΔΑΙϹ
22.1	VEC	No	9
22.2	TES	Yes	0
22.4	NO	No	1.6
22.5	NO	Yes	0

- Single process error for all 4 management areas No convergence with area specific process error
- Area specific scaling parameters for IPHC CPUE for all 4 management areas
- AIC support for extra variance (can't compare IPHC CPUE using AIC)
- All models gave similar biomass estimates...

\rightarrow More process error without the extra observation error

→ More process error without the IPHC CPUE data when no extra observation error

→ But, slightly less process error without the IPHC CPUE data when there is extra observation error

Model	Parameter	Estimate	SE	LCI	UCI	2022 Biomass (mt)	
	Process error	0.104 —	0.031	0.064	0.190		
	CSEO scaling	0.00000505	00000040	0.00000432	0 00000590		
Model 22.1	parameter (q)	0.000000000		0.00000132	0.0000000000000000000000000000000000000	18 104	
1110001 22.1	EYKT q	0.00000197	00000022	0.00000158	0.00000245	10,101	
	NSEO q	0.00001257	00000268	0.00000828	0.00001909		
	SSEO q	0.00000351	0000036	0.00000288	0.00000429		
	Process error	0.085	0.025	0.048	0.152		
	CSEO q	0.00000500	0000060	0.00000396	0.00000631		
	EYKT q	0.00000200	0000029	0.00000151	0.00000265		
Model 22.2	NSEO q	0.00001302	00000341	0.00000779	0.00002175	17,511	
	SSEO q	0.00000364	00000053	0.00000274	0.00000484		
	Extra biomass	0.257	0.072	0 155	0.404		
	observation error	0.237	0.005	0.133	0.404		
Model 22.4	Process error	0.179 🤶	0.0489	0.105	0.306	17,765	
	Process error	0.065	0.0418	0.0187	0.229		
Model 22.5	Extra biomass	0 277	0.0772	0.156	0.461	17,986	
	observation error	0.277	0.0773				

- Similar trends in ROV Biomass and IPHC CPUE...
 - \rightarrow Downward trend with plateauing in recent years
- ... with lots of uncertainty

\rightarrow IPHC CPUE seems informative

- \rightarrow Smooths unlikely volatility in biomass estimates in some instances
- Adds contrast that REMA model otherwise smooths in other instances

Entire SEO:

Random Effect Models vs. Status-quo

Yelloweye OFL and max ABC

Preferred Model 22.2: Extra observation error & IPHC CPUE index

Total DSR OFL and max ABC

*only years with commercial, subsistence and recreational estimates

, ,	Species	Scientific Name	Max catch (t) 2010–2014	OFL (t)	ABC (t)
	Canary rockfish	S. pinniger	5.6	5.6	4.2
	China rockfish	S. nebulosus	1.4	1.4	1.1
	Copper rockfish	S. caurinus	4.4	4.4	3.3
	Quillback rockfish	S. maliger	13.9	13.9	10.4
]	Rosethorn rockfish	S. helvomaculatus	0.0	0.0	0.0
_	Tiger rockfish	S. nigrocinctus	0.8	0.8	0.6
	Sum Tier 6 (t)			26.1	19.6

OTHER, NON-YELLOWEYE DSR

- Non-yelloweye DSR OFL (Tier 6) = 26 t
- Non-yelloweye DSR ABC (Tier 6) = 20 t TOTAL GOA DSR:
- Total DSR OFL = yelloweye OFL + other DSR OFL = 376 t
- Total DSR max ABC = yelloweye ABC + other DSR ABC = 283 t

Risk Table

Assessment volated	Population	Environmental/	Fishery	
Assessment-related	dynamics	ecosystem	Performance	
	considerations	considerations	considerations	
Level 2:	Level 2:	Level 1: Normal	Level 2:	
Substantially	Substantially		Substantially	
increased concerns	increased concerns		increased concern	

Assessment: uncertainty in biomass estimates no age-structured model

 \bullet

Recommend a 15% reduction in yelloweye ABC

recreational insperies, bulk of current catch is bycatch in other insperies

Risk Table

Assassment related	Population	Environmental/	Fishery
Assessment-retuted	dynamics	ecosystem	Performance
	considerations	considerations	considerations
Level 2:	Level 2:	Level 1: Normal	Level 2:
Substantially	Substantially		Substantially
increased concerns	increased concerns		increased concern

TOTAL GOA DSR:

- Yelloweye recommended ABC = 0.85*yelloweye max ABC = 224 t
- Total recommended DSR ABC = rec YE ABC + other DSR ABC = 244 t

Species	Year	Biomass ¹	OFL	ABC	TAC ²	Commercial catch ³	Recreational mortality ⁴	Total catch ⁵
DSR	2019	10,592	411	261	254	145	59	221
	2020	10,620	375	238	231	111	5	129
	2021	10,648	405	257	250	112	б	131
	2022	12,388	422	268	261	164	6	183
	20236	17,501 ⁶	376	244	236	-	-	-

Rec. ABC 9% reduction from last year
Still above recent harvests/removals

Future Work

- Revisit natural mortality estimates
- Refinement of the IPHC CPUE index
- Development of historical discard estimation methods for the halibut fishery
- Development and CIE review of the statespace surplus production model
- Life history data on yelloweye rockfish
 - Maturity
 - Fecundity

	As estimated or			As est	timated or	
	specified last year for:			recommend	ed this year for:	
Quantity	2022	2023		2023	2024	
<i>M</i> (natural mortality)	0.02	0.02		0.02	0.02	
Tier	4	4	111	5	5	
	12,388		1 7 7 5	17 5 1 1		
Yelloweye Biomass (t)	(17,273)			17,311	V	
$F_{OFL}=F_{35\%}$	0.032	0.032	F_{OFL} ($F=M$)	0.02	0.02	
maxF _{ABC}	0.026	0.026	maxF _{ABC}	0.015	0.015	
FABC	0.020	0.020	FABC	0.01275	0.01275	
DSR OFL (t)	422	422		376	376	
DSR max ABC (t)	342	342		283	283	
Recommended ABC (t)	268	268		244	244	
Status	As determined last year			As determin	ad this year for:	
Status	for:	for:		As determin	termined uns year for.	
and the second	2020	2021		2021	2022	
Overfishing	No	n/a		No	n/a	

QUESTIONS AND DISCUSSION

2

ASSESSMENT OF THE DEMERSAL SHELF ROCKFISH STOCK COMPLEX IN THE SOUTHEAST OUTSIDE SUBDISTRICT OF THE GULF OF ALASKA:

A NEW STATE-SPACE SURPLUS PRODUCTION MODEL

September 2022

Phil Joy, ADF&G – Commercial Fisheries Division Jane Sullivan, NOAA – Alaska Fisheries Science Center Rhea Ehresmann, ADF&G – Commercial Fisheries Division Mike Jaenicke, ADF&G – Sport Fish Division

ASSESSMENT OF THE DEMERSAL SHELF ROCKFISH STOCK COMPLEX IN THE SOUTHEAST OUTSIDE SUBDISTRICT OF THE GULF OF ALASKA November 2022

Phil Joy, ADF&G – Commercial Fisheries Division Jane Sullivan, NOAA – Alaska Fisheries Science Center Rhea Ehresmann, ADF&G – Commercial Fisheries Division Andrew Olson, ADF&G – Commercial Fisheries Division Mike Jaenicke, ADF&G – Sport Fish Division

10mm