2019 Tanner Crab Stock Assessment

William Stockhausen AFSC/NMFS/NOAA Sept 18, 2019

Overview

- Directed fishery closed in eastern management area
- TAC: 1,106 t. Retained catch: 1,107 t
- NMFS EBS survey results
 - mature male biomass: 20,100 t (-50%)
 - mature female biomass: 4,800 t (-2%)

immature male biomass: 8,540 t (+16%) immature female biomass: 4,900 t (-2%)

		Biomass	TAC	Retained	Total Catch		
<u>Year</u>	MSST	(MMB)	(East + West)	Catch	Mortality	OFL	ABC
2015/16	12.82	73.93	8.92	8.91	11.38	27.19	21.75
2016/17	14.58	77.96	0.00	0.00	1.14	25.61	20.49
2017/18	15.15	64.09	1.13	1.13	2.37	25.42	20.33
2018/19	20.54	82.61	1.11	1.11	1.90	20.87	16.70
2019/20		39.55				28.86	23.09

• Stock in Tier 3b.

• Not overfished. Overfishing did not occur.

September 2018

CPT comment: The *CPT* identified several concerns with new models presented in the assessment. The most important of these concerns was that all of the new models used a revised catch estimates in the directed fishery and the bycatch in snow crab fish. These estimates were nearly the same as the original estimates after 1995 but showed much larger changes in 1992-1995 (catches prior to 1992 were not revised). Inclusion of these revised catch estimates had a large impact on estimated Tanner crab biomass for the entire time series, shifting it upwards by approximately 70%. *CPT* was concerned that there was no opportunity to review the methodology to produce the new estimates, and it was unclear to the CPT whether observer coverage (the basis for the revised catch estimates) was adequate to support earlier estimates. Second, the revised catch time series was only used for Tanner crab and not for the other crab assessments in this cycle. The CPT would have preferred that revisions to catch estimates be done consistently for all crab stocks, rather than in a piecemeal way. Finally, it was not clear to the CPT what was driving the extreme sensitivity of the model to the revised catch estimates. Response: The revised crab fishery catch data was reviewed at the 2018 assessment was shown to be due the inadvertent use of raw counts, rather than counts scaled to retained catch sample sizes, as input sample sizes for the revised size composition data. The CPT requested that the accepted 2018 assessment model (18AM17) with the "old" fishery data and a "bridging" model scenario that included the revised data be presented at the Fall 2019 meeting to provide a transition to using the revised crab fishery data. This has been done (Scenarios M19F00 and M19F00a, respectively).

May 2019

CPT comment: The CPT accepted the author's recommended models for presentation in September 2019. Response: Results from all the recommended models are presented here, however the names assigned to the various scenarios differ between those used in the May meeting and those used here. The following table provides a map from the names used at the May meeting to those used here:

models	scenario	scenario description							
May	Sept								
19F.0	M19F00	2018 assessment model (18AM17)							
19F.0a	M19F00a	M19F00 with revised ADFG data for 1990+ crab fisheries							
19F.1	M19F01	M19F00a updated for 2018/19 (base model for 2019)							
19F.2	M19F02	M19F01 + 2006+ observed male maturity data							
19F.3	M19F03	M19F02 - male maturity characterized by Rugolo/Turnock maturity ogive							
19F.4	M19F04	M19F01 + 2013-2017 BSFRF/NMFS side-by-side data							
19F.5	M19F05	M19F03 + 2013-2017 BSFRF/NMFS side-by-side data							

May 2019

CPT comment: compare the estimated selectivity to the ratio of NMFS to BSFRF numbers at length. Is estimated and empirical catchability/availability/selectivity the same? Does the empirical selectivity look logistic?"

Response: This has been done. The empirical selectivity looks like it could be logistic (and associated q's support model estimates). The estimated availabilities are not the same as the empirical availabilities.

CPT comment: show the fits to the BSFRF length composition data by year as well as in aggregate. Response: These fits are shown in Appendix B.

CPT comment: check the bounds of parameters when estimating the BSFRF data. Response: Fitting the BSFRF data results in no better, or worse, performance in terms of parameters hitting their bounds.

CPT comment: indicate whether or not Hessians were produced. Response Hessians were produced for the "best" model runs for all scenarios and .std files were obtained.

CPT comment: Suggest rationale for chosen weighting for the second difference smoothing on the availability curve.

Response: The rationale for the selected weighting is that it reflects a preference toward a smoothlyvarying function, reflecting an assumption that crab of similar sizes would tend to be found together with no abrupt dichotomies (which would justify a smaller smoothing weight) in spatial distribution with size. However, this assumption has not been examined in detail.

May 2019

CPT comment: Make incorporating chela height data in the assessment a priority because this might address changes in the probability of maturing over time

Response: Chela height data, in the form of male maturity ogives based on collections of chela heights since 2006, is incorporated in several model scenarios examined here, including the author-preferred scenario.

CPT comment: Compare trends in largest crab to fishing pressure and area occupied by stock. Response: This is a good suggestion that, time permitting, will be addressed before the January 2020 CPT meeting.

CPT comment: Compare the maximum sizes seen in the fishery to the survey. Response: Another good suggestion that, time permitting, will be addressed before the January 2020 CPT meeting.

CPT comment: Consider blocking for estimation of growth and probability of maturing. Response: This has been on the "to do" list for a while now, but with relatively low priority. The problem is that the principal data which the model relies on for estimating both processes is, except for size compositions, only available (from a practical standpoint) since 2006 for male maturity ogives and since 2015 for (both sexes) molt increment data. The ability of the model to reliably estimate changes in these processes is thus somewhat doubtful.

CPT comment: Provide retrospective analysis and calculate Mohn's rho for MMB Response: The current model code does not support retrospective analyses without jittering. Time was not available to evaluate jittered retrospective model runs.

SSC Comments

October 2018, June 2019

SSC Comment: The SSC reminded authors to use the model numbering protocols that allow the SSC to understand the year in which a particular version of the model was first introduced. *Response:* The assessment does not follow this numbering protocol yet. Scenario M19F00 represents the model selected by the SSC/CPT last year ("18AM17", which was updated with 2018 data from the 2017 assessment model).

SSC Comment: The SSC encourages authors (using VAST estimates of survey biomass) to consider whether or not the apparent reduction in uncertainty in survey biomass is appropriately accounted for with their models/

Response: The Tanner crab assessment does not yet use VAST-based estimates of survey biomass.

The SSC requested an evaluation of all parameters estimated to be at or very near bounds, or substantially limited by priors (unless those priors can be logically defended).

Response: The assessment includes an evaluation of all such parameters, which hit bounds in (almost) all scenarios. Several are logit-scale parameters hitting bounds of -15 or 15 (0 or 1 on arithmetic scale) as expected; these could be fixed. Two are catchability parameters for the NMFS EBS survey during 1975-1981 that hit lower bounds of 0.5, which may not be unreasonable estimates given survey gear and areal coverage during this period. The remainder are related to selectivity functions that might be re-parameterized.

Fishery Trends

Management Regions

Retained catch size compositions in the directed fishery

2006 2005 0.6-0.4 -0.2-0.0-2007 2008 0.6retained catch abundance (millions) 2013 2009 2014 2015 0.0-2017 2018 0.6-0.4 -0.2-0.0-50 100 50 100 150 150 size (mm CW)

scaled to abundance

normalized

Total catch size compositions for males in the crab fisheries

Total catch size compositions for males in the crab fisheries

Survey Trends

NMFS EBS Survey Trends

Legal Male Trends in the NMFS EBS Survey

NMFS EBS Survey Size Compositions

Survey biomass of small (< 40 mm CW) crab vs. environmental variables

std areaCP

Cold Pool Area

Average Bottom Temperature

Assessment Model

Tier 3 stage/size-based population dynamics model

- model year runs July 1 to June 30
- sex, shell condition, maturity state, carapace width
- sex/stage-based natural mortality (2 time stanzas)
- trawl survey occurs July 1
- fisheries occur Feb. 15
 - directed fishery (retained and bycatch)
 - bycatch in snow crab fishery
 - bycatch in BBRKC fishery
 - bycatch in groundfish fisheries
- sex-specific growth & maturity (after fisheries)
 - pre-molt/post-molt size transition matrix
 - size-specific probability of maturing on molt
 - terminal molt to maturity
- spawning stock (MMB) assessed at mating, before growth

Model scenarios

model scenario	number of parameters	scenario description
M19F00	357	2018 assessment model (18AM17)
M19F00a	357	M19F00 with revised ADFG data for 1990+ crab fisheries
M19F01	363	M19F00a updated for 2018/19 (base model for 2019)
M19F02	363	M19F01 + 2006+ observed male maturity data
M19F03	343	M19F02 - male maturity characterized by Rugolo/Turnock maturity ogive
M19F04	628	M19F01 + 2013-2017 BSFRF/NMFS side-by-side data
M19F05	608	M19F03 + 2013-2017 BSFRF/NMFS side-by-side data

Base model: population processes

process	time blocks	description									
Population rates and	quantities										
Population built from annual recruitment											
Recruitment	1949-1974	In-scale mean + annual devs constrained as AR1 process									
	1975+	In-scale mean + annual devs									
Growth	1949+	sex-specific									
		mean post-molt size: power function of pre-molt size									
		post-molt size: gamma distribution conditioned on pre-molt size									
Maturity	1949+	sex-specific									
		size-specific probability of terminal molt									
		logit-scale parameterization									
Natural mortalty	1949-1979,	estimated sex/maturity state-specific multipliers on base rate									
	1985+	priors on multipliers based on uncertainty in max age									
	1980-1984	estimated "enhanced mortality" period multipliers									

Base model: fishery characteristics

Fishery/process	timeblocks	description
TCF	directed Tanner cra	ıb fishery
capture rates	pre-1965	male nominal rate
	1965+	male In-scale mean + annual devs
	1949+	In-scale female offset
male selectivity	1949-1990	ascending logistic
	1991-1996	annually-varying ascending logistic
	2005+	annually-varying ascending logistic
female selectivity	1949+	ascending logistic
maleretention	1949-1990, 1991-	ascending logistic
	1996,2005-2009,	
	2013-2015, 2017	
SCF	bycatch in snow cr	ab fishery
capture rates	pre-1978	nominal rate on males
	1979-1991	extrapolated from effort
	1992+	male In-scale mean + annual devs
	1949+	In-scale female offset
male selectivity	1949-1996	dome-shaped
	1997-2004	dome-shaped
	2005+	dome-shaped
female selectivity	1949-1996	ascending logistic
	1997-2004	ascending logistic
	2005+	ascending logistic

Base model: fishery characteristics

Fishery/process	timeblocks	description
RKF	bycatch in BBRK(C fishery
capture rates	pre-1952	nominal rate on males
	1953-1991	extrapolated from effort
	1992+	male In-scale mean + annual devs
	1949+	In-scale female offset
male selectivity	1949-1996	ascendinglogistic
	1997-2004	ascendinglogistic
	2005+	ascendinglogistic
female selectivity	1949-1996	ascendinglogistic
	1997-2004	ascendinglogistic
	2005+	ascendinglogistic
GTF	bycatch in groun	dfish fisheries
capture rates	pre-1973	maleIn-scale mean from 1973+
	1973+	maleIn-scale mean + annual devs
	1973+	In-scale female offset
male selectivity	1949-1986	ascendinglogistic
	1987-1996	ascendinglogistic
	1997+	ascendinglogistic
female selectivity	1949-1986	ascendinglogistic
	1987-1996	ascendinglogistic
	1997+	ascendinglogistic

Base model: NMFS survey characteristics

process	time blocks	description
Surveys		
NMFS EBS trawl surv	/ey	
male survey q	1975-1981	In-scale
	1982+	In-scale w/ prior based on Somerton's underbag experiment
female survey q	1975-1981	In-scale
	1982+	In-scale w/ prior based on Somerton's underbag experiment
male selectivity	1975-1981	ascendinglogistic
	1982+	ascendinglogistic
female selectivity	1975-1981	ascendinglogistic
	1982+	ascendinglogistic

Base model: likelihood components

Component	Туре	included in optimization	Distribution	Likelihood							
	abundance	no	lognormal	males only							
TCF: retained catch	biomass	yes	norm2	males only							
	size comp.s	yes	multinomial	males only							
	abundance	no	lognormal	by sex							
TCF: total catch	biomass	yes	norm2	by sex							
	size comp.s	yes	multinomial	by sex							
	abundance	no	lognormal	by sex							
SCF: total catch	biomass	yes	norm2	by sex							
	size comp.s	yes	multinomial	by sex							
	abundance	no	lognormal	by sex							
RKF: total catch	biomass	yes	norm2	by sex							
	size comp.s	yes	multinomial	by sex							
	abundance	no	lognormal	by sex							
GTF: total catch	biomass	yes	norm2	by sex							
	size comp.s	yes	multinomial	by sex							
	abundance	no	lognormal	by sex							
NIMES "O" and an	biomass	yes	lognormal	by sex, for mature crab only							
NMFS 0 survey	size comp.s	yes	multinomial	by sex/maturity							
	chela height data	no									
	abundance	no	lognormal	all males							
(malas anly no maturity)	biomass	no	lognormal	all males							
(males only, no maturity)	size comp.s	no	multinomial	all males							
NIMES HEL and	abundance	no	lognormal	by maturity classification							
(fomales only w/ maturity)	biomass	no	lognormal	by maturity classification							
(Temales only, w/ maturity)	size comp.s	no	multinomial	by maturity classification							
growth data	EBS only	yes	gamma	by sex							

Model Datasets

Model/data timelines

year	1946 1945	1948 1947	1949	1951 1950	1953 1952	1954	1956 1955	1957	1959 1958	1961 1960	1962	1964	1965 1965	1967	1968	1970	1971	1973 1973	1974	1976 1975	1977	1979 1978	1980	1981	1983	1984	1986 1985	1987	1988	1990	1991	1993 1992	1994	1996 1995	1997	1999 1998	2000	2002	2003	2003	2006	2007	2009	2010	2012	2013	2014	2016 วก1ร	2017	2013
Model			styr																																															
			Hist	orica	recr	uitm	ent (r	nod	el spii	า-up)									F	lecru	itme	ent		1	982-	⊦for	mear	n rec	ruitr	nent								-												
Directed Tann	er cra	b fish	ery	(TCF			_		_						_	┢	_				_	_		-	502		inear	TTEC	luiti			-		-		-														_
retained catch	n		num	bers	bion	nass)	¢
			size	comp	ositi	ons																					<u>c</u>										<u>c</u>								<u>0</u>			<u>0</u>	}	¢
	******		effot	t (pot	lifts)																						ose										ose								n se			ose	>	(
total			num	bers,	bion	nass																					<u>a</u>			;	x						đ							'	2			0	>	¢
catch			size	comp	ositi	ons				_												_																											>	(
Snow crab fis	hery (SCF)																																																
bycatch			num	bers	bion	nass																								X	x					_													>	C
			size	comp	ositi	ons																								X	x					_													X	¢
			effot	t (pot	lifts)																_		_							-))	C
BBRKC fisher	/ (RKF)																												L																				
bycatch			num	bers,	bion	nass																								X	x		clo																>	C
			size	comp	ositi	ons																								X	x		sed																×	(
			effot	t (pot	lifts)																																												×	(
Groundfish fis	heries	(GTI	•)				_		_						_							_							_		_			_		_							-							
bycatch			bior	nass (comb	oinec	sexe	es))	<
			size	comp	ositi	ons (by sex	x)																																									>	ĸ
NMFS Survey			Т																																	_							-							
			abui	ndan	ce, bi	oma	SS																																											x
			size	comp	ositi	ons																																												x
			size-	weig	nt rel	atior	ships	S																																										x
			male	e mat	urity	ogiv	es (ch	ela ł	neight	data)																															x	хх	K	x	x		x	x	x >	< x
			grov	vth d	ata					_												_												_									_			_			х	x
BSFRF SBS Su	rvey		abu	ndan	ce, bi	oma	ss																																							x	x x	X	x	
	on Code		size	comp	ositi	ons																								-						_										X	XX	X	X	

Updated	Description	Data types	Time frame	Notes	Source
opulled		area-swept abundance, biomass	1975-2019	recalculated, new	
data	NMFS EBS Bottom	size compositions	1975-2019	recalculated, new	NMFS
	Hawi Sulvey	male maturity data	2006+	new	
	NMFS/BSFRF	molt-increment data	2015-17, 2019	uodated	NMFS, BSFRF
	BSFRF SBS Bottom	area-swept abundance, biomass	2013-17	new	DSEDE
	Trawl Survey	size compositions	2013-17	new	DSFKF
		historical retained catch (numbers, biomass)	1965/66-1996/97	not updated	2018 assessment
		historical retained catch size compositions	1980/81-2009/10	not updated	2018 assessment
	Directed fighers	retained catch (numbers, biomass)	2005/06-2018/19	updated, new	ADFG
	Directed inshery	retained catch size compositions	2013/14-2018/19	updated, new	ADFG
		total catch (abundance, biomass)	1991/92-2017/18	revised, new	ADFG
		total catch size compositions	1991/92-2017/18	revised, new	ADFG
		historical effort	1978/79/1989/90	not updated	2018 assessment
	Snow Crob Fishery	effort	1990/91-2018/19	revised, new	ADFG
	Show Clab Fishery	total bycatch (abundance, biomass)	1990/91-2018/19	revised, new	ADFG
		total bycatch size compositions	1990/91-2018/19	revised, new	ADFG
		historical effort	1953/54-1989/90	not updated	2018 assessment
	Bristol Bay Red King	effort	1990/91-2018/19	revised, new	ADFG
	Crab Fishery	total bycatch (abundance, biomass)	1990/91-2018/19	revised, new	ADFG
		total bycatch size compositions	1990/91-2018/19	revised, new	ADFG
		historical total bycatch (abundance, biomass)	1973/74-1990/91	not updated	2018 assessment
	Groundfish Fisheries	hostorical total bycatch size compositions	1973/74-1990/91	not updated	2010 assessment
and and a second se	(all gear types)	total bycatch (abundance, biomass)	1991/92-2017/18	revised, new	NMES/AKEIN
	A	total bycatch size compositions	1991/92-2017/18	updated, new	

Fishery data issues: total catch revision

- Historical directed fishing effort from 1990/91+ for the Tanner crab, snow crab, and BBRKC fisheries was revised by D. Pengilly based on fish ticket data and landed catch composition to more closely match current methods assigning directed effort to crab fisheries
- Revised effort is substantially different from "historical" effort in the Tanner and snow crab fisheries, in particular
- This impacts the expansion of observed catch to total because it scales with directed effort

$$A = \frac{n_T}{n_s} \cdot a$$

 n_T : directed effort (potlifts) n_s : observer effort (pots sampled)

• Secondarily, this resulted in sampling effort (and samples) being re-assigned among fisheries

Total catch biomass of Tanner crab in the directed and snow crab fisheries

Bycatch size compositions in the snow crab fishery

NOAA FISHERIES

Molt Increment Data

- 16 new male observations
- 34 new female observations

Male Maturity Ogive Data

- NMFS EBS survey collections
 - since 2006, CH to 0.1 mm
- Maturity classification based on CH:CW ratios (J.Richar, NMFS)
- Ratio of new shell mature males to all new shell males
- 10mm CW size bins

Fitting male maturity data

- Observed size-specific ratio (new shell mature males/all new shell males) assumed binomial-distributed
- Likelihood given by:

$$L_{m} = \sum_{y,z} n_{y,z} \cdot \{ p_{y,z}^{obs} \cdot \ln(p_{y,z}^{mod} + \delta) + (1 - p_{y,z}^{obs}) \cdot \ln(1 - p_{y,z}^{mod} + \delta) \}$$

• $n_{y,z}$: number of observations

BSFRF/NMFS side-by-side (SBS) catchability studies

- BSFRF and NMFS conducted side-by-side haul studies to better characterize catchability for Tanner crab
 - 2013-2017
 - 2018 (not yet available)
- NMFS hauls
 - 83-112 trawl gear
 - 30 min. tow
- BSFRF hauls
 - modified nephrops trawl gear
 - 5 min. tow

2015

SBS catchability studies: sampled crab

NOAA FISHERIES

size (mm CW)

150

100

SBS catchability studies: area-swept abundance

OAA FISHERIES

10-5.0 2.5-00. 100 size (mm CW) 2015 2.0 -100-1.5-1.0-50-0.5 80-40size (mm CW) 150

2014

. 2014

100 size (mm CW)

2016

2016

15-

Modeling availability and selectivity

$$\tilde{n}_{x,z}^s = q_x^s \cdot S_{x,z}^s \cdot A_{x,z} \cdot n_{x,z}$$

NMFS EBS (
$$A_{x,z} \equiv 1$$
): $\hat{n}_{x,z}^{NMFS} = q_x^{NMFS} \cdot S_{x,z}^{NMFS} \cdot n_{x,z}$

BSFRF
$$(q_x^{BSFRF}, S_{x,z}^{BSFRF}) \equiv 1)$$
: $\tilde{n}_{x,z}^{BSFRF} = A_{x,z} \cdot n_{x,z}$

NMFS SBS:

$$\tilde{n}_{x,z}^{NMFS} = q_x^{NMFS} \cdot S_{x,z}^{NMFS} \cdot A_{x,z} \cdot n_{x,z}$$

Model estimation

$$A_{x,z} = \frac{1}{1 + \exp(-p_{x,z})}$$
$$\mathcal{L}_{S} = \lambda \cdot \left[\nabla(\nabla p_{x,z})\right]^{2}$$

Empirical estimation

$$A_{x,z} = \frac{\tilde{n}_{x,z}^{NMFS}}{\hat{n}_{x,z}^{NMFS}} \qquad S_{x,z}^{NMFS} = \frac{\tilde{n}_{x,z}^{NMFS}}{\tilde{n}_{x,z}^{BSFRF}}$$

SBS catchability studies: empirical availability

empirical estimate for availability:

• not logistic

SBS catchability studies: empirical catchability

empirical estimate for q:

- males: ~0.6
- females: ~0.4

Model Performance

Model scenario highlights

- 5 scenarios evaluated for 2019
 - Crab fishery data updated 1990-2019
 - All fit new molt increment data
 - Some fit maturity ogive data
 - Some fit BSFRF-NMFS SBS data
- All scenarios fit fishery very well
- All scenarios fit survey data reasonably well
- Lower estimates for NMFS survey catchability, selectivity
- Higher recruitment estimates

Model performance

model scenario	number of parameters	objective function value	max gradient	Jitter runs	# runs converged to MLE	scenario description
M19F00	357	2,962.17	0.0004			2018 assessment model (18AM17)
M19F00a	357	3,025.43	0.0003			M19F00 with revised ADFG data for 1990+ crab fisheries
M19F01	363	3,368.11	0.0002	3,000	94	M19F00a updated for 2018/19 (base model for 2019)
M19F02	363	3,521.89	0.0004			M19F01 + 2006+ observed male maturity data
M19F03	343	3,467.75	0.0013	3,000	72	M19F02 - male maturity characterized by Rugolo/Turnock maturity ogive
M19F04	628	3,578.47	0.0004	3,000	7	M19F01 + 2013-2017 BSFRF/NMFS side-by-side data
M19F05	608	3,674.61	0.0004	3,000	5	M19F03 + 2013-2017 BSFRF/NMFS side-by-side data

M19F00 vs. M19F00a: Effects of revised fishery data

Directed fishery: fits to male catch data

Directed fishery: fits to female bycatch data

More fits to bycatch data

Fits to bycatch data from the groundfish fisheries

Fits to NMFS EBS mature survey biomass

Model processes: NMFS survey

female

male

Model processes

Image: Natural Mortality

female

0.8

0.6

0.4

male

≞

Model recruitment estimates

Model population estimates

Model processes: directed fishery

Model processes: snow crab fishery

Model processes: BBRKC fishery

Model processes: groundfish fisheries

NOAA FISHERIES

Changes in management quantities

Model Scenario	average recruitment millions	Final MMB 1000's t	B0 1000's t	Bmsy 1000's t	Fmsy	MSY 1000's t	Fofl	OFL 1000's t	projected MMB 1000's t	projected MMB / Bmsy
M19F00	223.63	66.64	86.55	30.29	0.74	12.75	0.74	20.87	35.95	1.19
M19F00a	284.28	82.05	94.24	32.99	0.89	14.58	0.89	27.90	41.52	1.26

Results from M19F0X Scenarios

Directed fishery: fits to male catch data

Directed fishery: fits to female bycatch data

More fits to bycatch data

Fits to bycatch data from the groundfish fisheries

Marginal fits to fishery size compositions: directed fishery

Marginal fits to fishery size compositions: bycatch fisheries

M19F00a

M19F01 M19F02 M19F03

M19F04 M19F05

Fits to NMFS EBS mature male survey biomass

Fits to NMFS EBS mature female survey biomass

Fits to NMFS EBS (all) male survey biomass

Fits to NMFS EBS female survey biomass

Marginal fits to NMFS survey size compositions

Fits to SBS male survey biomass

NOAA FISHERIES

Fits to SBS female survey biomass

Marginal fits to SBS BSFRF size compositions

SBS BSFRF females

M19F04M19F05

Marginal fits to SBS NMFS size compositions

Fits to molt increment data

Fits to maturity ogive data

Estimated model processes

Estimated recruitment

Estimated mature population biomass

Population abundance trends

M19F00a

M19F01

M19F02

M19F03

M19F04

M19F05

Model processes: directed fishery

NOAA FISHERIES

Model processes: snow crab fishery catchability

case

M19F00a

M19F01

M19F02

M19F03

M19F04

M19F05

Model processes: BBRKC fishery catchability

Model processes: groundfish fisheries catchability

Model processes: NMFS EBS surveys

case

Model processes: SBS availability functions

case M19F04

M19F05

Estimated vs. Empirical Availability Functions

Pearson residuals for M19F01, M19F03 fits to NMFS "0"

Pearson residuals for M19F01, M19F03 fits to NMFS "M"

NMFS M

male

Pearson residuals for M19F01, M19F03 fits to NMFS "0"

Pearson residuals for M19F01, M19F03 fits to NMFS "0"

(mm CW)

size

Model scenario evaluation

- All models estimate NMFS survey q's at lower bounds->population scale ~2x over M19F00
 - result principally of updated crab fishery data
 - fitting maturity ogives, SBS data secondarily
- Models with SBS data (M19F04, 05) don't seem to estimate availability very well
 - LOTS more parameters, not very stable
- M19F01 and M19F04 (& M19F00a, M19F02) fit "manufactured" male maturity data
- Author recommended model: M19F03
 - drops Rugolo-Turnock immature/mature categorization for males
 - fits 2006+ male maturity ogive data (0.1 mm CH prec.)
 - does not fit BSFRF-NMFS SBS data: better stability

Management-related quantities

Model Scenario	average recruitment	Final MMB	BO	Bmsy	Fmsy	MSY	Fofl	OFL	projected MMB	projected MMB / Bmsy
	millions	1000's t	1000's t	1000's t		1000's t		1000's t	1000's t	
M19F00	223.63	66.64	86.55	30.29	0.74	12.75	0.74	20.87	35.95	1.19
M19F00a	284.28	82.05	94.24	32.99	0.89	14.58	0.89	27.90	41.52	1.26
M19F01	316.79	68.79	100.85	35.30	0.81	15.58	0.81	22.54	35.66	1.01
M19F02	367.48	71.54	105.59	36.96	1.11	17.89	1.03	24.75	34.63	0.94
M19F03	393.84	82.61	118.96	41.64	1.18	19.49	1.12	29.48	39.68	0.95
M19F04	377.28	74.03	106.76	37.37	0.87	16.87	0.87	24.87	37.50	1.00
M19F05	418.73	80.33	116.44	40.75	1.21	19.40	1.14	28.58	38.42	0.94

estimated OFL (1000's t)

		Biomass	TAC	Retained	Total Catch		
Year	MSST	(MMB)	(East + West)	Catch	Mortality	OFL	ABC
2015/16	12.82	73.93	8.92	8.91	11.38	27.19	21.75
2016/17	14.58	77.96	0.00	0.00	1.14	25.61	20.49
2017/18	15.15	64.09	1.13	1.13	2.37	25.42	20.33
2018/19	20.54	82.61	1.11	1.11	1.90	20.87	16.70
2019/20		39.55				28.86	23.09

Year	Tier ^A	B msy ^A	Current MMB ^A	B/Bmsy ^A	Fofl ^A (yr ⁻¹)	Years to define Вмsy ^A	Natural Mortality ^{A,I} (yr ⁻¹)
2015/16	3a	26.79	53.70	2.00	0.58	1982-2015	0.23
2016/17	3a	25.65	45.34	1.77	0.79	1982-2016	0.23
2017/18	3a	29.17	47.04	1.49	0.75	1982-2017	0.23
2018/19	3a	21.87	23.53	1.08	0.93	1982-2018	0.23
2019/20	3b	41.07	39.55	0.96	1.08	1982-2019	0.23

NOAA FISHERIES

Future work

OAA FISHERIES

- continue work on integrating SBS studies
 - use empirical selectivity from SBS studies as prior?
 - use empirical availabilities from SBS studies
 - instead of estimating availabilities?
 - as priors on estimated availabilities?
- consider nonparametric or re-parameterized functions for BBRKC, groundfish fishery selectivity
- examine pros/cons for disaggregating directed fishery into East/West 166W components
- examine size-weight relationships for crab in directed fishery
- examine more potential environmental drivers for recruitment
- remove 1975-1981 NMFS EBS survey estimates from model fits?

