Assessment of the Northern Rock Sole stock in the Bering Sea and Aleutian Islands

Carey R. McGilliard, James Ianelli, Meaghan Bryan, Ingrid Spies, Rebecca Haehn, and Andre E. Punt

November 2022

Life History and environmental relationships

- Winter spawners
- Cooper and Rogers (2020) showed a relationship between small cold pool/warmer temperatures + strong onshore winds with high recruitment success due to availability of a northern nursery area
- Recruitment success appears strongly tied to temperature conditions (warmer temperatures = high success)
- Ciannelli et al. (2022) showed overlap of most extreme predicted future temperatures in the nearshore + life stage of high vulnerability (physiologically) of juveniles residing there to extremes for NRS and other small-bodied flatfish
- Effects of ocean acidification on juvenile flatfish, but minor in climate-enhanced projections (Punt et al.)
- Effect of temperature on maximum length, but this assessment uses yearly data on empirical weight-at-age (Punt et al.)

Catch (1977-2022)

Year	Jan-Mar	Apr-June	July-Sep	Oct-Dec
2012	0.8	0.14	0.04	0.02
2013	0.68	0.17	0.12	0.03
2014	0.69	0.22	0.06	0.03
2015	0.64	0.23	0.11	0.02
2016	0.48	0.44	0.06	0.02
2017	0.42	0.46	0.1	0.02
2018	0.38	0.55	0.05	0.01
2019	0.34	0.57	0.07	0.03
2020	0.43	0.3	0.23	0.04
2021	0.37	0.51	0.07	0.05
2022*	0.5	0.35	0.13	0.02

Catch has been declining since 2012

Predominant areas include: 509 and 513

Mainly caught Jan-Mar or April-June, has varied over time

r																		
and the second	543	542	541	540	524	523	522	521	519	518	517	516	514	513	512	511	509	Year
100 C	0	0	0	0	0	0	0	0.01	0	0	0.04	0.08	0.03	0.02	0	0	0.81	2012
A A A	0	0	0	0	0	0	0	0.02	0	0	0.09	0.16	0.02	0.06	0	0	0.64	2013
530 550 524 514	0	0	0	0	0	0	0	0.03	0	0	0.03	0.15	0.03	0.09	0	0	0.66	2014
543 550 521 ALASKA	0	0	0	0	0	0	0	0.02	0	0	0.01	0.09	0.22	0.07	0	0	0.59	2015
523	0	0	0	0	0	0	0	0	0	0	0.01	0.29	0.35	0.09	0	0	0.24	2016
542 BSAI 517 508 56547 578	0	0	0.01	0	0	0	0	0.01	0	0	0.02	0.19	0.24	0.21	0	0	0.33	2017
518 519	0	0	0.01	0	0.02	0	0	0.01	0	0	0.03	0.07	0.48	0.11	0	0	0.28	2018
541 010 520 GOA	0	0	0.01	0	0.01	0	0	0.02	0	0	0	0.08	0.55	0.12	0	0	0.19	2019
	0	0	0	0	0	0	0	0.03	0	0	0.01	0.2	0.17	0.24	0	0	0.34	2020
N T C C C C C C C C C C C C C C C C C C	0	0	0	0	0	0	0	0.01	0	0	0.01	0.08	0.29	0.2	0	0	0.4	2021
0 225 450 900 Kilometers	0	0	0	0	0	0	0	0.09	0	0	0.01	0.01	0.07	0.33	0.02	0	0.46	2022
17000000 16000000 16000000 144																		

CPUE consistently high in Bristol Bay, north of Bristol Bay, and the Pribilof Islands

Combined sex, bottom trawl survey numbers-at-age

- Big cohorts from early 2000's dying out
- New recruitments coming through (2015-2020)

Millions

Survey biomass

Declining biomass 2011 -2019 Seeing increases in recent years:

6% increase in 2021

25% increase in 2022

Base model fit to survey biomass

Bottom trawl survey biomass index

Base model fit to survey age compositions

Base model fit to fishery age compositions

Base model recruitment

Base model spawning biomass

Female spawning biomass (kt)

Base model survey and fishery selectivity

Base model survey and fishery selectivity

Retrospective Analysis

 ρ_{SSB} = 0.18

Concerns about the base model

- No formal data weighting approach + conflict between survey biomass and age composition data
- Is 2020 estimate of recruitment (only observed once and only in survey data) driving biomass estimates?
- Why are uncertainty intervals so small?

Alternative models to better understand base model

- M22.1: Francis (2011) methodology for data weighting
 - Philosophy that survey biomass should be weighted more heavily and scale of current population and reference points should be informed more by survey biomass and less by age compositions
- M22.2: As for M22.1, but additionally estimate female M such that both female and male M are estimated
 - This is an underutilized stock and data may be informative about natural mortality for this reason
 - Better representation of uncertainty in the model

Alternative models: fits to survey biomass

Bottom trawl survey biomass index

Alternative models: retrospective patterns

Model 22.1: ρ_{SSB} = 0.1

Alternative models: parameter estimates

	Mod	el 18.3	Mode	22.1	Model 22.2		
Parameter	(20	022)	(20)	22)	(20	22)	
	value	std.dev	value	std.dev	value	std.dev	
log catchability	0.67	0.026	0.73	0.025	0.50	0.031	
female natural mortality					0.19	0.004	
male natural mortality	0.17	0.002	0.19	0.002	0.22	0.004	
mean log recruitment	6.78	0.108	6.67	0.108	7.25	0.118	
mean log initial age composition	3.38	0.125	3.26	0.120	3.60	0.127	
log average fishing mortality	-2.26	0.087	-2.15	0.084	-2.30	0.086	
average slope of fishery selectivity (f)	1.00	0.047	0.96	0.036	0.96	0.035	
average age at 50% fishery selectivity (f)	9.05	0.477	9.18	0.476	9.44	0.490	
average slope of fishery selectivity (m)	1.26	0.400	1.19	0.047	1.20	0.047	
selectivity offset for males	-0.13	0.052	0.01	0.050	-0.14	0.055	
slope of survey selectivity (f)	1.87	0.100	2.15	0.313	1.76	0.233	
slope of survey selectivity (m)	0.26	0.070	0.20	0.188	0.28	0.173	
age at 50% survey selectivity (f)	3.51	0.060	3.32	0.136	3.66	0.162	
age at 50% survey selectivity (m)	-0.14	0.020	-0.13	0.049	-0.15	0.050	
log alpha of Ricker stock-recruit curve	2.87	0.200	2.94	0.203	3.23	0.204	
log beta of Ricker stock-recruit curve	-5.25	0.110	-5.18	0.108	-5.43	0.115	
maximum sustainable yield	220.50	40.930	212.38	39.515	257.95	54.467	
Fmsy	0.33	0.164	0.33	0.171	0.34	0.195	
logFmsy	-1.11	0.501	-1.11	0.521	-1.07	0.572	
Fmsyr	0.17	0.036	0.18	0.039	0.17	0.040	
logFmsyr	-1.76	0.209	-1.72	0.219	-1.79	0.243	
Bmsy	155.29	12.346	146.99	11.647	173.95	13.654	
Bmsyr	1277.80	154.300	1191.00	150.430	1551.30	199.450	

Alternative model M22.2: fits to survey age composition

Alternative model M22.2: fits to fishery age composition

Supporting analyses that could be done for M22.2

- Likelihood profiles over catchability and natural mortality and/or run MCMCs and calculate posterior distributions for these parameters
- Sensitivity to phase of estimation
- Sensitivity to starting values

Risk table

Assessment-related considerations	Population dynamics considerations	Environmental/ ecosystem considerations	Fishery Performance considerations
Level 3: Major concern	Level 1: no increased concerns	Level 1: no increased concerns	Level 1: no increased concerns

- The new, large 2020 recruitment estimated by the model has only been observed once and is a mismatch with the survey biomass index
- The models with Francis data weighting have much improved fits to survey biomass data and much improved retrospective patterns
- It appears from the comparison of retrospective patterns across models that it is a feature of the base model to consistently overestimate recent recruitments and spawning biomass
- The SSC recommended evaluating the probability that ABC > true, but unknown OFL
- The models using Francis data weighting estimate OFL's that are lower than the ABC estimated by the base model
- Therefore ABC was reduced to the OFL for Model 22.1

Harvest recommendations

- Spawning biomass is down from previous assessment (declining trend as cohorts from early 2000's disappear)
- ABC reduced from maxABC due to assessment uncertainty in the Risk Table
- ABC = OFL from M22.1 (which just changed to Francis data weighting from base model)
- OFL M22.1 < OFL M22.2

	As estin	nated or	As estimated or		
Quantity	specified la	st year for:	recommended this year for:		
	2022	2023	2023	2024	
M(natural mortality rate)	0.15 (f),0.17	0.15 (f),0.17	0.15 (f),0.19	0.15 (f),0.19	
	(m)	(m)	(m)	(m)	
Tier	1a	1a	<u>la</u>	1a	
Projected total (age 6+) biomass (t)	1,361,360	1,784,460	941,359	1,111,320	
Projected Female spawning biomass (t)	287,600	320,399	260,887	291,774	
Bo	476,820	476,820	447,795	447,795	
BMSY	158,972	158,972	155,293	155,293	
Fofl	0.157	0.157	0.176	0.176	
maxF _{ABC}	0.152	0.152	0.169	0.169	
F_{ABC}	0.152	0.152	0.169	0.169	
OFL (t)	214,084	280,621	166,034	196,011	
maxABC (t)	206,896	271,199	158,935	187,631	
ABC (t)	206,896	271,199	121,719	119,969	
54- 4	As determined	last year for:	As determined this year for:		
Status	2020	2021	2021	2022	
Overfishing	no	n/a	no	n/a	
Overfished	n/a	no	n/a	no	
Approaching overfished	n/a	no	n/a	no	

Alternative Model Harvest recommendations

	As estim	ated or	As estimated or		
Quantity (M22.1)	specified las	t year for:	recommended this year for:		
	2022	2023	2023	2024	
M (natural mortality rate)	0.15 (f),0.17 (m)	0.15 (f),0.17 (m)	0.15 (f),0.19 (m)	0.15 (f),0.19 (m)	
Tier	1a	1 a	1 a	1a	
Projected total (age 6+) biomass (t)	1,361,360	1,784,460	666,361	656,779	
Projected Female spawning biomass (t)	287,600	320,399	255,669	258,601	
B ₀	476,820	476,820	447,795	447,795	
B_{MSY}	158,972	158,972	146,995	146,995	
F _{OFL}	0.157	0.157	0.183	0.183	
$maxF_{ABC}$	0.152	0.152	0.174	0.174	
F _{ABC}	0.152	0.152	0.174	0.174	
OFL (t)	214,084	280,621	121,719	119,969	
maxABC (t)	206,896	271,199	116,002	114,334	
ABC (t)	206,896	271,199	116,002	114,334	
Status	As determined	last year for:	As determined this year for:		
Status	2020	2021	2021	2022	
Overfishing	no	n/a	no	n/a	
Overfished	n/a	no	n/a	no	
Approaching overfished	n/a	no	n/a	no	

Alternative Model Harvest recommendations

	As estima	ated or	As estimated or		
Quantity (M22.2)	specified las	t year for:	recommended this year for:		
	2022	2023	2023	2024	
M (natural mortality rate)	0.15 (f),0.17 (m)	0.15 (f),0.17 (m)	0.15 (f),0.19 (m)	0.15 (f),0.19 (m)	
Tier	1a	1 a	1 a	1a	
Projected total (age 6+) biomass (t)	1,361,360	1,784,460	811,324	804,351	
Projected Female spawning biomass (t)	287,600	320,399	256,816	266,079	
B ₀	476,820	476,820			
B _{MSY}	158,972	158,972	173,946	173,946	
F ofl	0.157	0.157	0.171	0.171	
$maxF_{ABC}$	0.152	0.152	0.161	0.161	
F _{ABC}	0.152	0.152	0.161	0.161	
OFL (t)	214,084	280,621	138,942	137,748	
maxABC (t)	206,896	271,199	130,985	129,859	
ABC (t)	206,896	271,199	130,985	129,859	
Status	As determined i	last year for:	As determined this year for:		
Status	2020	2021	2021	2022	
Overfishing	no	n/a	no	n/a	
Overfished	n/a	no	n/a	no	
Approaching overfished	n/a	no	n/a	no	

Data Gaps and Research Priorities

- Evaluate reason for conflict between survey biomass and age composition
- Continue working group to identify environmental influences on NRS and their mechanisms
- Continue working on climate-enhanced projection model with BSAI NRS
- Future model modifications:
- Update formal data weighting approach (M22.1 and M22.2, Appendix A)
- Estimate female and male M (M22.2, Appendix A) with further supporting analyses
- Include ageing error estimates