# Bristol Bay Red King Crab Assessment in Fall 2014 

## J. Zheng and M.S.M. Siddeek ADF\&G, Juneau

## Outline



## Response to CPT Comments

"1. Drop Scenarios 4 and $4 b$ because these use the old data."
Done.
"2. Move forward with Scenarios 4na, 4nb for September 2014."
Done.
"3. Although it appears to result in improved model fits, drop Scenario $4 n b 7$ from consideration until a mechanism for the estimated higher M can be established; this scenario can be presented for reconsideration once a plausible mechanism has been identified."

SSC asked to continue $4 n b 7$, which has been changed to $4 n 7$. So scenario $4 n 7$ is still in the SAFE report for September 2014.
"4. Add the number of estimated parameters to tables that compare values for likelihood components from different Scenarios so that the degree of improved fit can be more easily evaluated. Also, express the values of log-likelihood components between the base and alternative models as differences (e.g., base less alternative), rather than reporting the actual values because it is the differences in log-likelihood values that are informative."

Done.

## Response to SSC Comments

1. Include scenario 4n7.
2. Need to change scenario names
3. A scenario with random walk may be added in May assessments in the future.
4. Recruitment dynamics is the top priority for our research. We will continue to investigate factors that impact recruitment strength.

## Summary of Major Changes in 2014

1. Changes to the input data:
a. Newly re-estimated trawl survey results provided by NMFS in 2014 were used.
b. Catch and bycatch data were updated with 2014 data.
c. Trawl bycatch length frequency data during 1986-2012 and trawl bycatch abundance data during 2009-2012 were revised based on the new data provided by NMFS in 2014.
d. Tanner crab fishery bycatch length frequency and abundance data were revised based on the revised data provided by ADF\&G in 2014.

## Summary of Major Changes in 2014

2. Changes to the assessment methodology:

Three model scenarios are evaluated in this report:
Scenarios 4na and 4nb: the same as scenarios 4na and 4nb in the SAFE report in May 2014. Scenario 4na is the same as scenario 4 used to set OFL in 2013. Scenario 4nb differs with scenario 4 na by estimating trawl survey catchability within the model.
Scenario 4n7: the same as scenario 4nb7 in the SAFE report in May 2014. Scenario $4 n 7$ is the same as scenario 4nb except it estimates one additional natural mortality parameter for both males and females during 2006-2010.









## Scenario

| Negative log likelihood | 4 na | 4nb-4na | 4n7-4na | $4 \mathrm{n} 7-4 \mathrm{nb}$ |
| :--- | ---: | ---: | ---: | ---: |
| R-variation | 78.08 | -0.06 | 2.48 | 2.54 |
| Length-like-retained | -948.94 | -0.54 | -2.90 | -2.36 |
| Length-like-discmale | -953.65 | 0.38 | 1.38 | 1.00 |
| Length-like-discfemale | -2250.44 | -0.67 | 2.26 | 2.93 |
| Length-like-survey | -44871.50 | -2.20 | -12.30 | -10.10 |
| Length-like-disctrawl | -1967.16 | 1.03 | 2.17 | 1.14 |
| Length-like-discTanner | -330.52 | -0.27 | -1.87 | -1.60 |
| Length-like-bsfrfsurvey | -237.28 | -0.02 | -1.71 | -1.69 |
| Catchbio_retained | 46.35 | 0.29 | -2.46 | -2.74 |
| Catchbio_discmale | 210.62 | -0.35 | -6.11 | -5.76 |
| Catchbio-discfemale | 0.14 | 0.00 | 0.03 | 0.03 |
| Catchbio-disctrawl | 0.86 | 0.00 | -0.02 | -0.02 |
| Biomass-trawl survey | 87.67 | -2.31 | -4.25 | -1.95 |
| Biomass-bsfrfsurvey | -5.42 | 1.00 | 2.00 | 1.00 |
| Others | 21.50 | 1.12 | -1.40 | -2.52 |
| Total | -51119.70 | -2.60 | -22.70 | -20.10 |
|  |  |  |  |  |
| Free parameters | 266 | 1 | 2 | 1 |

$\checkmark$ The area-swept abundance estimates from the survey in 2014 are higher than expected and are not consistent with the results from the previous several years.
$\checkmark$ Model estimated relative survey biomasses are very similar between scenarios 4 na and 4 nb and differ with those of 4 n 7 . Increasing natural mortality from 0.18 to 0.27 during 2006-2010 under scenario $4 n 7$ provided a better fit of trawl survey data during recent years, resulting in a much lower OFL.
$\checkmark$ Scenario 4 nb is recommended for overfishing determination this year. The full results for scenarios 4 na and 4 nb are presented in this report.


## BSFRF survey: Scenario 4na

## BSFRF survey: Scenario 4nb

BSFRF survey length frequency (scenario 4na)


BSFRF survey length frequency (scenario 4na)



Scenario 4na



## Scenario 4na Males



Scenario 4na
Females


Scenario 4na Males


Scenario 4nb Males


Scenario 4na Females


## Scenario 4nb, historical results



## Scenario 4nb, historical results



Scenario 4nb, 2014 model


## Scenario 4nb, 2014 model



Total recruitment, scenario 4nb, 2014 model results



Scenario 4na






Scenario 4nb

Based on the $B_{35 \%}$ estimated from the average male recruitment during 1984-2014, the biological reference points and OFL:
(based on the $10 \%$ rule used last year, $A B C=0.9^{*} \mathrm{OFL}$ )

|  | Scenario 4na |  | Scenario 4nb | Scenario 4n7 |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1000 t | Million lbs | 1000t Million lbs |  | 1000 t | Million Ibs |
| $\mathrm{B}_{35 \%}$ | 26.313 | 58.010 | 25.703 | 56.665 | 27.953 | 61.627 |
| $\mathrm{~F}_{35 \%}$ | 0.29 |  | 0.29 |  | 0.29 |  |
| $\mathrm{MMB}_{2014}$ | 25.735 | 56.736 | 24.687 | 54.443 | 20.407 | 44.990 |
| $\mathrm{OFL}_{2014}$ | 7.289 | 16.070 | 6.820 | 15.036 | 3.982 | 8.779 |
| $\mathrm{ABC}_{2014}$ | 6.560 | 14.463 | 6.138 | 13.532 | 3.584 | 7.901 |

Status and catch specifications (1000 t):

| Year | MSST | Biomass <br> (MMB) | TAC | Retained <br> Catch | Total <br> Catch | OFL | ABC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2010 / 11$ | $13.63^{\mathrm{A}}$ | $32.64^{\mathrm{A}}$ | 6.73 | 6.76 | 7.71 | 10.66 | N/A |
| $2011 / 12$ | $13.77^{\mathrm{B}}$ | $30.88^{\mathrm{B}}$ | 3.55 | 3.61 | 4.09 | 8.80 | 7.92 |
| $2012 / 13$ | $13.19^{\mathrm{C}}$ | $29.05^{\mathrm{C}}$ | 3.56 | 3.62 | 3.90 | 7.96 | 7.17 |
| $2013 / 14^{\mathrm{a}} 13.16^{\mathrm{D}}$ | $28.67^{\mathrm{D}}$ | 3.90 | 3.99 | 4.56 | 7.07 | 6.36 |  |
| $2014 / 15^{\mathrm{a}}$ | $25.73^{\mathrm{D}}$ |  |  |  | 7.29 | 6.56 |  |
| $2013 / 14^{\mathrm{b}} 12.85^{\mathrm{D}}$ | $27.12^{\mathrm{D}} 3.90$ | 3.99 | 4.56 | 7.07 | 6.36 |  |  |
| $2014 / 15^{\mathrm{b}}$ | $24.69^{\mathrm{D}}$ |  |  |  | 6.82 | 6.14 |  |
| $2013 / 14^{\mathrm{c}} 13.98^{\mathrm{D}}$ | $20.60^{\mathrm{D}}$ | 3.90 | 3.99 | 4.56 | 7.07 | 6.36 |  |
| $2014 / 15^{\mathrm{C}}$ | $20.41^{\mathrm{D}}$ |  |  |  | 3.98 | 3.58 |  |

[^0]Basis for the OFL: All table values are in 1000 t .

| Year | Tier | $\mathrm{B}_{\text {MSY }}$ | Current <br> MMB | $\mathrm{B} / \mathrm{B}_{\text {MSY }}$ <br> $(\mathrm{MMB})$ | $\mathrm{F}_{\text {OFL }}$ | Years to <br> define <br> $\mathrm{B}_{\text {MSY }}$ | Natural <br> Mortality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2010 / 11$ | 3 a | 28.4 | 37.7 | 1.33 | 0.32 | $1995-2010$ | 0.18 |
| $2011 / 12$ | 3 a | 27.3 | 29.8 | 1.09 | 0.32 | $1984-2011$ | 0.18 |
| $2012 / 13$ | 3 b | 27.5 | 26.3 | 0.96 | 0.31 | $1984-2012$ | 0.18 |
| $2013 / 14$ | $3 b$ | 26.4 | 25.0 | 0.95 | 0.27 | $1984-2013$ | 0.18 |
| $2014 / 15^{\mathrm{a}}$ | $3 b$ | 26.3 | 25.7 | 0.98 | 0.28 | $1984-2014$ | 0.18 |
| $2014 / 15^{\mathrm{b}}$ | 3 B | 25.7 | 24.7 | 0.96 | 0.28 | $1984-2014$ | 0.18 |
| $2014 / 15^{\text {c }}$ | $3 b$ | 28.0 | 20.4 | 0.73 | 0.20 | $1984-2014$ | 0.18 |

a---Scenario 4na, b---Scenario 4nb, and c --- Scenario 4n7

Male area-swept abundance during 2010-2014


Female area-swept abundance during 2010-2014



Scenario 4nb


Scenario 4nb

Jhanks


Clutch fullness did not change much over time.



[^0]:    a---Scenario 4na, b---Scenario 4nb, and c --- Scenario 4n7

