Where did this happen?

Markus Horning1 & Jo-Ann Mellish2,3

1 Oregon State University – 2 Alaska SeaLife Center, Seward, AK – 3 University of Alaska Fairbanks

Markus Horning Alaska SeaLife Center

vital rate telemetry: survival/mortality, reproduction

- **LHX tags**: how do they work?
- **LHX tags in Steller sea lions**: what have we learned?
- **cold and old**: the enigmatic Pacific sleeper shark
Where did this happen?

Vital rate transmitters in juvenile Steller sea lions

Markus Horning
Alaska SeaLife Center
LHX tags

How do they work?

- Life-long implants that monitor vital signs

 LHX-1: 42 x 123mm, 118g
 LHX-2: 33 x 97mm, 54g

 Sensors: temperature, light, dielectric (surrounding medium) accelerometers, “parturition detection”

- *Post-mortem* satellite-linked data retrieval (Argos)

- *Known fate data*: spatio-temporally unlimited re-sight effort → high resolution data – better than 1 day

- 2 tags per animal to increase and determine event detection probability, ideally

- Determination of causes of mortality from temperature, light and dielectric sensors

 (Horning & Mellish, Endangered Species Research 2009)

Markus Horning

Alaska SeaLife Center
The LHX Project

Controls

- LHX tags - *studies in quarantined captivity @ASLC*: low morbidity, zero mortality, **full recovery in 45 days**

- Survival confirmed >45d for all released animals

- No differences in dive behavior from LHX tags or captivity
 (Mellish et al., JEMBE 2007; Thomton et al., ESR 2008)

- $P_{detect} > 0.98$ (carcass simulations & live returns)
 \rightarrow **likely no mortalities undetected in study group**
 (Horning & Mellish, PLoS ONE 2012)

- No differences detected in survival to brand re-sight controls – Mean annual survival ages 1-5 years:
 LHX 0.82 (95%: 0.71 – 0.89) captive
 FR (ctrl) 0.83 (95%: 0.72 – 0.90) non-captive
 (Shuert et al., PLoS ONE 2015)

Markus Horning
Alaska SeaLife Center
• 45 weaned Steller sea lions released with dual LHX tags in PWS/KF from 2005 through 2014
 (Mellish et al. Aquatic Mammals 2006
 Horning et al. BMC Veterinary Research 2008)

• > 65,000 monitoring days

• 80 juveniles monitored via external satellite transmitters

• 10 carcass tests with dual LHX tags

• Data from >130 Argos transmitters (*internal + external*)

• Longest monitoring 14 years (to age 15)
 Longest confirmed survival >14 years
 Three oldest females confirmed with pups
‘Non-traumatic’ death:
Tag stays in whole carcass

Gradual cooling with delayed extrusion

- delayed sensing of light, air, and transmits: death by disease, starvation, entanglement, drowning...
- allows estimation of mass at time of death from cooling rates

(Horning & Mellish, Endangered Species Research 2009)
PREDATION:
Tag comes out of carcass

Rapid cooling with immediate extrusion

- immediate sensing of light, air, and transmits: dismemberment, predation

Examples from 11 deceased Steller sea lions:

(Horning & Mellish, Fishery Bulletin 2014)
• 20 mortalities detected from 14 mo to 4.1 yrs age

• All 18 events with data were due to predation (circles)
Where did this happen?

The LHX Project

Results - 3 of 18 predation events

Time of day

Temperature (°C)

TJ52
1 tag

TJ64
2 tags

TJ63
2 tags

(SST)

Horning & Mellish, Fishery Bulletin 2014

Markus Horning
Alaska SeaLife Center
Somniosus pacificus

Sluggish, benthic scavengers?

Markus Horning
Alaska SeaLife Center
The LHX Project

Predation locations
95% confidence range
\(n = 12 \)

excluded:
location delays >5d

(Bishop, Brown et al. in prep)
Utilization Distributions (UD): juvenile Steller sea lion space use

Next:
Combining space use and predation locations

From n=84 juvenile SSL (1-3 yrs) satellite tracked for avg. 77 days between 2000 and 2014

(Bishop et al., Movement Ecology 2018)
Next:
Combining space use and predation locations

From randomly resampled predation location ranges and their individually associated seasonal UDIs

(Bishop, Brown, Sattler et al. in prep)
The LHX Project

what predators?

Not a spatial analysis!

Reclassified UD levels by % of simulated predation locations associated with UD level

Does not suggest a specialist predator!

But: more time dry or shallower diving is associated with slightly higher probability of predation: Near haulouts/surface: *killer whales?*

(Bishop, Brown, Sattler et al. in prep, Dubel et al. in prep)
The LHX Project

harbor seals in western Aleutian Islands

surgical unit on back deck of R/V Norseman

inside surgical unit
The LHX Project

Aleutian Island harbor seals

10 harbor seals released with dual LHX tags between Adak and Attu in 2016

3 returns to date:
1 non-predation
2 predation

pilot project with NMFS/MML

Photo by S. Steingass
Somniosus pacificus

New project: catch, keep, study, tag & release

Markus Horning
Alaska SeaLife Center
Somniosus pacificus

New project: catch, keep, study, tag & release

Markus Horning
Alaska SeaLife Center
Somniosus pacificus

New project: catch, keep, study, tag & release

Shark preyed on by offshore killer whales
Alaska SeaLife Center
Oregon State University
Alaska Dept. Fish & Game
California State University Long Beach
Wildlife Computers, Inc.

Markus Horning
JoAnn Mellish (Steller sea lions)
Amy Bishop, Ally Dubel, Renae Sattler (Steller sea lions & sleeper sharks)
Peter Boveng (harbor seals)
Chris Lowe (sleeper sharks)

National Science Foundation
North Pacific Research Board
Pollock Conservation Cooperative
NOAA
North Pacific Fisheries Foundation

Veterinarians:
Marty Haulena, Pam Tuomi, Carrie Goertz, Kathy Woodie,
Shawn Johnson, Rachel Berngartt, Stacie DiRocco, et al.

Permits: NMFS # 1034-1685; 881-1668; 881-1890, 14325, 14335, 14336, 19309, DFO-SA, ADFG ARP #CF-18-041, etc..

