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A. Overview

Two assessment configurations were presented in September 2020: the status quo assessment model and
an assessment based on the GMACS platform. The SSC chose the status quo model over the GMACS
implementation for snow crab in October 2020 as a result of retrospective patterns and large estimates of
the recruitment for 2015 from GMACS. The large estimates of recruitment from GMACS produced large
OFLs and resulted primarily because GMACS fit the last two years of survey biomass better than the status
quo model. When forced to fit the final two years of survey MMB similarly well as GMACS, the status quo
model produced estimates of recruitment and the OFL comparable to GMACS.

Retrospective patterns are present in both the status quo model and the GMACS model. For example, in
the 2019 SAFE document, the Mohn’s rho ranged from 0.48 to 0.54 for four selected configurations of the
status quo model (which was somewhat less than the 0.66 for the 2020 GMACS model). When confronted
with retrospective patterns in a stock assessment, three options are commonly considered: 1) incorporate
more model structure to allow the necessary flexibility to fit the data (e.g. allow a process to vary over time
that was not previously varying over time), 2) perform post hoc adjustments of the management quantities
based on the magnitude of retrospective patterns (similar to what the CPT suggested by increasing the
buffer to 50% for the ABC in 2020), or 3) use a survey-based index of abundance or biomass to set the OFL
(similar to the Tier 4 harvest control rules).

A CIE review occurred in March of 2021 for the snow crab assessment. Final reports have not yet been
received, but retrospective patterns, their potential causes, and methods for addressing them were central
themes of discussion. Reconsidering data weighting and further exploration of the CPUE data for use in
assessment and management were also key suggestions.

This document primarily explores methods to address retrospective patterns in the snow crab assessment,
given retrospective patterns were a common issue of concern for the CPT, the SSC, and the CIE reviewers.
The most pressing problem for this assessment appears to be time-variation in multiple processes for which
we lack informative data. Substantial time-variation in multiple processes not only makes estimation of the
terminal year of exploitable biomass difficult, it also make the calculation and interpretation of reference
points difficult. Ultimately, it is not clear how to overcome this problem. Each method presented has
pros and cons, but none present a completely satisfying method to address retrospective patterns. Future
work evaluating management strategies with data simulated from operating models that have multiple time-
varying processes will hopefully illuminate a path forward. In the interim, either post hoc adjustments to the
integrated assessment output or modifications of the Tier 4 methodology are likely the best way to address
retrospective patterns in the snow crab assessment.

Before presenting the analyses, comments from the SSC are addressed below.



B. SSC comments + author responses

SSC comment: Generally, the SSC accepts a new model when it represents an improvement over the previous
model. There are some improvements and advantages with the author-preferred GMACS model relative to
the status quo model, but there are also some unresolved problems. Beyond improved fits to the data, one of
the most important evaluation criteria is biological plausibility of the results, and a new modeling framework
is only as good as the plausibility of the results. The SSC noted that it seems unlikely that the stock is 4x
larger than last year’s estimate, while lacking new survey data to support that conclusion.

The estimated MMB for the author preferred model in 2019 was 167 kt; in 2020 it was 276.7 kt (a ~65%
increase). Model 20.3 did have a larger change than this, but it was not the author-preferred model. The
changes in the author-preferred model were consistent with changes observed in the stock when similarly
sized recruitments entered the population. The numbers at length in the survey from 2015-2018 consistently
suggested a cohort larger than has ever been observed (Figure 1). However, the survey data from 2019
suggested a decline in numbers across all size classes. Even with that decline, the remaining numbers at
length were comparable to the cohort that supported >100 kt catches in the late 1990s at a similar point in
its development (see the 1996 numbers at length and compare that to the retained catches in 1997).

SSC comment: Despite this change in scale, there is still a very large positive retrospective pattern which is
puzzling because one would expect this positive bias to be reduced if the previous model was overestimating
stock size. The SSC recommends further efforts to reduce the large retrospective pattern in future models,
perhaps through time-varying catchability, natural mortality changes, or different selectivity functions.

Author response: The retrospective patterns exist in both the status quo and GMACS model (see the SAFE
from 2019 in which the retrospective pattern from the status quo model had a Mohn’s rho of 0.54-0.48).
Time-varying catchability and natural mortality are explored below in the status quo model and result
in smaller retrospective patterns, but produce different management advice. Implementing any new time-
varying process in an assessment with a retrospective pattern will improve the retrospective pattern, but
management advice can be drastically in error if the incorrect process is allowed to vary (Szuwalski et al.,
2019). Consequently, an understanding of what process is time-varying is recommended before implementa-
tion of time-variation in integrated assessments.

SSC comments: The author and CPT had concerns with how recruitment variability is controlled in Model
20.2, which does not appear to have been resolved with the extremely large estimated 2015 year class in the
author’s preferred model. The GMACS model (20.2) seemed to fit some of the data slightly better, most
particularly the MMB survey data in the terminal years, but the SSC considered the recruitment deviation
problem too big to ignore. Until a resolution is reached on how to appropriately control recruitment estimates,
the author provided a sensitivity to each of the 2018 and 2019 survey data points. This sensitivity revealed
that the model responded differently to each survey and showed that under either survey scenario, Model 20.2
was still providing higher estimates of MMB compared to the status quo model (20.1).

Large estimates of recruitment from the GMACS model compared to the status quo are primarily a result
of poor fits of the status quo model to the survey data. An example is presented here in which the status
quo model is forced to fit the survey data in the terminal years by inputting smaller CVs. This results in
estimates of recruitment similar to GMACS (though not quite as large) and an estimated OFL of 175 kt.
The 2015 cohort was on track to be the largest ever recorded based on the observations of numbers at length
from 2015 to 2018 (Figure 2). However, the survey data in 2019 showed a substantially reduced cohort
across most size classes. It is unclear whether this reduction was a result of a mortality event or changes in
catchability.

SSC comments: Another feature of the author-preferred GMACS model is extremely high fully-selected fishing
mortality in some years that would imply that 95 - 98% of fully-available large crab would have been harvested,
which does not seem logistically possible.

Author response: This is actually a feature of the status quo model, not GMACS. Fishing mortality estimates
from GMACS in the period over which those high exploitation rates occur in the status quo model are much
lower. This is one of the reasons GMACS was the author-preferred model in 2020.



SSC comments: In addition, the authors noted that there were no jittering tests done on Model 20.2 and that
the alternative GMACS configuration (20.3) had some convergence issues.

Jittering capabilities are still being developed for GMACS. The convergence issue was related to forcing
catchability to match the BSFRF implied catchability, which has also resulted in convergence issues in the
status quo model in the past.

SSC comments: The SSC requests the authors provide a biological rationale, if there is one, for differences
in the sex ratio of recruitment.

Author response: Differences in growth, different spatial distributions, differences in time-variation in other
processes like maturity are all possible reasons this might occur. All of that said, females do not enter either
the federal or state harvest control rules. Given the numerous uncertainties in attempting to estimate mature
male biomass, adding another source of uncertainty by forcing males to be linked to females does not seem
sensible given the outcomes, which include even larger retrospective patterns than currently observed in the
status quo and GMACS models.

SSC comments: As with all assessments, the estimation of natural mortality is a challenge for snow crab.
The SSC recommends that the authors consider examining the web-based Barefoot Ecologist tool to develop
a natural mortality prior distribution for snow crab.

Author response: The methods used to calculate a prior for natural mortality in the 2020 assessment were
the same methods used by the Barefoot Ecologist when maximum age is available.

SSC: comments: VAST modeling for the bottom trawl survey was postponed this year and the SSC would
like to see it move forward as model-based indices may help add robustness to future missing survey data or
a potential change in spatial distribution into the northern Bering Sea.

Author response: A run with VAST indices is included this year. The estimates from VAST are markedly
different in some years and, while CVs are smaller in many years, in other years they are much larger. It
is not difficult to perform another run with a VAST-derived index each year, but understanding whether or
not the outcomes are sensible when large differences appear is less easy. Given the number of other issues
with the snow crab assessment, this should be a low priority.



C. Summary of assessment scenarios for May 2021

Seven Tier 3 assessment models are presented here:

• 20.1 – Last year’s accepted model (status quo) fit to last year’s data
• 20.1g – Last year’s GMACS model fit to last year’s data
• 20.2 – Last year’s accepted model (status quo) fit to last year’s data with down-weighted size compo-

sition data (all weights equal 100, rather than 200)
• 20.2q – 20.2 + time-varying survey catchability from 1989-present
• 20.2m – 20.2 + time-varying natural mortality for mature males and females
• 20.2qm – 20.2 + time-varying survey catchability from 1989-present and time-varying natural mortality

for mature males and females
• 20.2v – 20.2 + VAST survey estimates

Growth was estimated outside of the model for 20.2 and the models with additional time-variation. Initial
runs of models with additional time-variation did not converge while growth was estimated inside the model
and, so, in order to retain comparability with 20.2, growth was estimated outside of the model for each of
these models.

In addition to the Tier 3 status quo and Generalized Model for Assessing Crustacean Stocks (GMACS) runs,
a series of modified Tier 4 models are also presented in which the random effects model used by the groundfish
plan team is used to calculate the time series of mature male biomass (MMB) used in the harvest control
rule and spawning biomass per recruit (SBPR) proxies for reference points are calculated using ‘empirical’
estimates of relevant population processes. Processes estimated within the assessment are compared to the
empirically derived estimates and some differences are observed.

D. Status quo and GMACS

Model description

The integrated size-structured model currently used (referred to within as the ‘status quo’ model) was
developed following Fournier and Archibald’s (1982) methods, with many similarities to Methot (1990). The
population dynamics in the status quo model tracks the number of crab of sex s, shell condition v, maturity
state m, during year y at length l, Ns,v,m,y,l . A terminal molt occurs in which crab move from an immature
to a mature state, after which no further molting occurs. The mid-points of the size bins tracked in the
model span from 27.5 to 132.5mm carapace width, with 5 mm size classes. Parameters estimated within
the assessment include those associated with recruitment, growth, natural mortality (subject to a fairly
informative prior), fishing mortality, selectivity (fishery and survey), survey catchability, and probability
of maturing. Weight at length, discard mortality, bycatch mortality, and parameters associated with the
variance in growth and proportion of recruitment allocated to size bin were estimated outside of the model or
specified. Growth parameters are estimated outside of the model for some runs presented here. See appendix
A for a complete description of the population dynamics.

The General Model for Assessing Crustacean Stocks (GMACS) was recently developed to promote consis-
tency and comparability among crab assessments (see appendix for equations). Several crab assessments
have been developed in GMACS and subsequently approved for use in management by the Crab Plan Team.
GMACS was developed with king crab-like life histories in mind, but has recently been modified to accom-
modate terminally molting life histories. The structure of the population dynamics model in GMACS is now
very similar to the status quo assessment model and can reproduce the dynamics of the male component
of the status quo model precisely with the correct configuration (see May 2020 CPT opilio document). A
single model (20.1g) identical to the GMACS model presented in September 2020 is presented here.

Six models built on the status quo assessment (20.1) are presented here. The first change to the status quo
model (model 20.2) alters the weights for all of the size composition data components from 200 to 100. A



calculation of the effective sample sizes was performed in the CIE review and, although each data source
had different effective sample sizes, the average was closer to 100 than 200. A more thorough exploration of
weighting schemes will be explored after methods for addressing retrospective patterns are identified.

Model 20.2 is the base for the remaining status quo assessments, three of which which introduce time-
variation in natural mortality (M) or catchability (q) or both of these processes (20.2m, 20.2q, 20.2qm,
respectively). Models 20.2m and 20.2qm add a dev_vector to the existing estimated parameters for mature
natural mortality of both sexes, plus a smoothing penalty, which helps convergence. Models 20.2q and 20.2qm
estimate survey catchability during 1989-present with a vector of bounded parameters (bounds = 0 and 1)
with a smoothing penalty. Smoothing penalties were chosen by trial and error, with the aim of making them
as small as possible while still avoiding convergence issues. The final status quo assessment (20.3) replaces
the design-based survey indices and associated coefficients of variation (CVs) with model-based indices and
CVs from VAST.

Retrospective analyses were performed in which the terminal year of data was removed sequentially from the
model fitting for the models in which additional processes were allowed to vary over time. Then estimated
management quantities (e.g. MMB) were compared between the most recent model and successive ‘peels’
of the data to identify retrospective patterns. A retrospective pattern is a consistent directional change in
assessment estimates of management quantities (e.g. MMB or the OFL) in a given year when additional
years of data are added to an assessment. Mohn’s rho (which computes the average difference between the
reference case and the peels) was calculated for each retrospective analysis (i.e. including and excluding the
terminal year survey data) to quantify the retrospective patterns. Retrospective analyses were performed
only for the status quo models given that the retrospective analyses for the GMACS model were presented
in September.

Additional runs of the status quo model (20.1) from the January CPT meeting are included to show the
impact of forcing the status quo model to fit the final years of survey data on estimates of recruitment.

Model fits

All models produced a positive-definite Hessian and had maximum gradient components less than 0.004,
except 20.2mq, which had a maximum gradient component of 0.01 for one of the recruitment deviations for
males (the rest were < 0.004). The smallest viable smoothing penalties tested were 1 and 10 for natural
mortality and catchability (respectively) when they were the only additional time-varying process in the
assessment. When both processes were allowed to vary, the penalty for natural mortality had to be increased
to 15 or the model did not converge. The likelihoods of the models are not comparable across the model
platforms, so those are not included in this document. The viable models from these analyses were the same
as those presented in September and the data has not changed, so the quantitative measures of model fit
presented then (e.g. median relative absolute error) are not presented here. Updated quantitative measures
of model fit will be added in September 2021 when new data are available.

Survey biomass data

The GMACS and status quo models without time-variation in M or q fit the survey MMB similarly except
for in the late 1980s through early 1990s and late 2010s, during which GMACS fit the data better (Figure 3).
Allowing time-variation in q or M improved the fits to the MMB data in the status quo model, particularly
in recent years (Figure 4). All models with time-invariant M and q (20.1, 20.2, 20.1g) missed the confidence
intervals of the last 5 of 6 years of survey MMB.

The survey MMB produced using VAST indices of abundance are somewhat higher than the status quo
model and the fits to the index are correspondingly higher (Figure 5). The status quo model (20.2) can be
forced to fit the last two years of data in a similar manner to GMACS by decreasing the CV for the 2018
data to 0.06 (Figure 6); the impact of this on estimated recruitment and the OFL is discussed below.



Retrospective patterns in MMB were observed in the status quo model 20.2, with a Mohn’s rho of 0.36
(Figure 7). Allowing additional time variation in natural mortality (20.2m), catchability (20.2q), or both
(20.2mq) reduced the retrospective patterns in MMB.

Growth data

Model 20.1 estimated male growth curves that produced higher growth increments at small sizes and lower
growth increments at large sizes than GMACS or the other versions of the status quo model in which growth
was estimated outside of the model (Figure 8). GMACS estimates of growth increments were most similar
to the estimates produced outside of the model.

Catch data

Retained catch data were fit by all models well, but the status quo models fit the data slightly better than
GMACS (Figure 9). Female discard data were fit more closely by GMACS, which is a reflection of the
transition to CVs that force greater precision than the weights used in the status quo assessment. Male
discard data during the period for which data exist (early 1990s to the present) were well fit by every model
(Figure 9).

Size composition data

Total and retained catch size composition were similarly fit by both GMACS and the status quo models.
However, GMACS predicted larger numbers of animals in the largest size bins for the first few model
years (Figure 10). This phenomenon disappeared in later years with fits to the data that were practically
indiscernible among models. Total catch and bycatch size composition data were both similarly fit by
the models, with total catch size composition being fit more closely than the bycatch data (Figure 11 &
Figure 12).

Fits to size composition data for the BSFRF survey selectivity experiments produced some notable runs of
positive and negative residuals for males (Figure 13). GMACS fit the data in 2010 (which are most important
for informing catchability) better than the status quo assessment, but which model best fit the 2009 data
was less clear.

Notable differences in fits to NMFS survey size composition data existed among models (Figure 14, Figure 15,
Figure 16 & Figure 17). GMACS fit the immature female size composition data better in many years
(e.g. 1984, 1986, 1996, 1997, 2007); GMACS fit the immature males more similarly to the status quo model
than the immature females. Fits to mature male size composition data were also similar between models
and the few differences seemed to favor GMACS (e.g. 1984, 1990, 2017-18). Differences between models for
fits to mature female size composition data were the smallest for survey size composition data.

Estimated population processes and derived quantities

Estimated population processes and derived quantities varied among models. Model 20.2mq produced the
largest historical estimates of MMB, resulting from allowing both M and q to vary over time (Figure 18).
Model 20.1g (GMACS) produced the largest estimate of MMB in 2019.

All status quo and GMACS models estimated lower catchability in survey era 1 (1982-1988) relative to era
2 (1989-present) for males, except the model that used VAST biomass indices. The shapes of the NMFS
selectivity curves were similar among all models; the largest changes were seen in the catchability coefficient
(Figure 19). Status quo models that allowed at least one additional time-varying process (20.2q, 20.2m,
20.2mq) all had average catchabilities similar to the BSFRF implied catchability. However, the variability
for 20.2q and 20.2mq was large, with estimated values ranging from ~0.2 to ~1 (Figure 20).



Predicted availability curves for the BSFRF experimental surveys were similar across assessments in years
with similar configurations (Figure 21). The status quo assessment historically used a logistic curve for the
availability for females in 2009, but this is likely overly restrictive. GMACS estimated a vector of availabilities
for both years and sexes of BSFRF data, which more closely reflect the empirical availabilities.

The shape of the estimated curve representing the probability of maturing for both sexes were similar within
sex, but the magnitude of the probabilities varied, most strongly for males in the 70-90 mm carapace width
range (Figure 22). The estimated probability of maturing at smaller sizes was consistently higher for females
in GMACS and this is related to the change from a kinked growth curve to a linear growth model. The
‘hump’ at 32.5 mm carapace width for females is likely related to the specified curve that determines what
fraction of incoming recruitment is placed in which length bin, which has a peak at the same spot as the
probability of maturing. Model 20.2mq had the highest fraction of sublegal and sub-industry-preferred crab
maturing.

Estimated fishing mortality scaled with estimated population size across models (Figure 23). GMACS models
generally estimated fishing mortality lower than the status quo models during survey era 1. Estimated fishery
and discard selectivity were dissimilar between model type (i.e. GMACS vs. status quo), which is related
to how selectivity and fishing mortality are treated in the code (see the May 2020 snow crab document
for more discussion). GMACS estimates of female discard mortality were lower than the status quo, but,
when balanced with changes in estimated selectivity, the estimated catches were similar to the status quo
(Figure 9).

Patterns in estimated recruitment by sex were similar for both GMACS and status quo models, but GMACS
estimates were more variable than the status quo estimates (Figure 24).There was a considerable amount
of variability in recruitment estimates for 2015 among models, and GMACS had the highest estimates.
Recruitment was larger in GMACS than the status quo model and the size of this recruitment is a strong
driver of the current year MMB and OFL. When the status quo model is forced to fit the data in a similar
manner to GMACS, the estimated recruitment from the status quo model is very similar to GMACS, as is
the estimated OFL (175 kt; Figure 6).

Estimated natural mortality from the GMACS model for immature crab was higher than the status quo
models, in spite of identical priors (Figure 25). Estimated immature natural mortality was generally higher
than mature natural mortality in GMACS, which was not seen in the status quo model for females. Estimates
of mean natural mortality were smaller for models in which natural mortality was allowed to vary over time
than for those in which natural mortality was constant over time. Natural mortality sharply increased in the
last several years for 20.2m, but only rose sharply in the last three for 20.2mq and reaching higher mortality
levels (Figure 26).

E. Random effects model

Estimates of biomass

A random effects model was fit to the survey male biomass for estimation of the MMB and ABC. This
model was developed for use in NPFMC groundfish assessments and is used for some Tier 4 crab assessments
(e.g. PIRKC). The likelihood equation for the random effects model is:

∑
i=1

0.5(log(2πσ2
i ) + (B̂i −Bi)2

σ2
i

) +
∑
t=2

0.5(log(2πσ2
p) + (B̂t−1 − B̂t)2

σ2
p

) (1)

where Bi is the observed biomass in year i, B̂t is the model estimated biomass in year t, σ2
i is the variance

of observed biomass in year i, σ2
p is the variance of the deviations in log survey biomass between years

(i.e. process error variance). σ2
p was estimated as e2λ, where λ is a parameter estimated in the random

effects model.



Deciding which time series of biomass to use as input to the random effects model (and then ultimately
into the harvest control rule) requires some thought. The definition of ‘legal’ crab is greater than 78 mm
carapace width, but the industry preferred size is >101 mm carapace width. In pursuing the industry
preferred crab, smaller crab are caught incidentally and some mortality occurs. So, >95 mm carapace width
may be an acceptable compromise that allows for considering total selectivity, rather than just retained. The
reproductive contribution of each size is also important to consider (discussed more below). For the sake of
comparison, all three indices were calculated with the random effects model.

Using a smaller size bin as the starting point for inclusion in the index predictably increased the scale of the
time series (Figure 27). Estimated biomass in 2019 was 175 kt, 54.5 kt, and 28.9 kt for the time series based
on >78 mm, >95 mm, and >101 mm crab, respectively. The random effects does not project estimates for
years of biomass beyond which there are data, which is inconvenient for this document since survey data is
not available in 2020 and this impairs comparison across models.

Survey selectivity and catchability

The random effects model assumes that catchability is 1 for the NMFS survey gear given the above inputs.
The Bering Sea Fisheries Research Foundation (BSFRF) has conducted supplementary surveys in the Bering
Sea in which snow crab were caught during 2009, 2010, 2016, 2017, and 2018 (Figure 28). These were aimed
at understanding the efficiency of the NMFS trawl gear with respect to crab (see Somerton et al. 2013).
Snow crab were targeted in 2009 and 2010, but also incidentally caught in 2016, 2017 and 2018 (Figure 29).
The estimated numbers at length data gleaned from these experiments (and the NMFS survey observations
occurring in the same areas; Figure 30 & Figure 31) can be used to estimate selectivity at size for the NMFS
gear. The key assumption required to estimate the selectivity is that the selectivity of the BSFRF gear is
equal to one for all size classes.

The empirical estimates of selectivity derived from these data vary from year to year (Figure 32). However,
the general trend is the selectivity of the NMFS gear is considerably less than one for most sizes of crab
(Figure 33). For those size classes that appear to have NMFS selectivity close to one (e.g. >110 mm),
the sample sizes are quite small. There is no immediately obvious reason why the selectivity of a 101 mm
carapace width crab would have a ~0.4 probability of capture and a 120 mm carapace width crab would have
a ~0.9 probability of capture. Consequently, survey selectivity is assumed to be logistic in the assessment.
For simplicity’s sake, the catchability of the large size classes was assumed to be 0.5 to demonstration how
these methods can be applied. This resulted in estimated biomass in 2019 of 350 kt, 109 kt, and 57.8 kt for
the time series based on >78 mm, >95 mm, and >101 mm crab, respectively.

In the future, a distribution of the catchability of the different size classes of crab included in the time series
entered into the random effects model could be generated by bootstrapping the inferred selectivity at size over
years and potentially space. Then, the estimates of MMB from the random effects models could be adjusted
based on these distributions of catchability. It may also be preferable to apply the catchability/selectivity to
the survey data before entering it into the random effects model, as it would avoid collapsing the catchability
information over size classes. However, it would also require many iterations of the random effects model to
be run to characterize the distribution of MMB. If the CPT and SSC are interested in the modified Tier 4
methodology, this will be explored for September.

Tier 4 proxies for BMSY

Tier 4 assessments specify proxies for the biomass at which maximum sustainable yield occurs (BMSY) as
the mean biomass over a period of time during which the stock is assumed to be fished at FMSY. This is a
somewhat tricky assumption for recruitment driven stocks like snow crab. The periods of highest biomass
correspond to the periods of the highest estimated fishing mortality in the integrated assessment. However,
given a lack of better options, the Tier 4 proxy for BMSY is specified here as the mean over the entire time
series for a given time series of estimates from the random effects model.



F. Spawning biomass per recruit proxies for FMSY

Historically, Tier 4 models have used natural mortality as a proxy for the fishing mortality that would
produce maximum sustainable yield. The use of natural mortality is often a response to a lack of information
on population processes like growth, selectivity, and maturity that are needed to calculate more accurate
reference points like the fishing mortality that decreases spawning biomass per recruit (SBPR) to 35% of
unfished levels (F35%; Clark, 1991). Both the status quo and GMACS assessments currently use SBPR
proxies for fishing mortality and biomass reference points based on the estimates of population processes
from within the assessment. Similar reference points can be calculated with a population dynamics model
and the data that inform these processes in the assessment.

Here, I calculate SBPR proxies for FMSY, but, instead of estimating parameters associated with these pro-
cesses within an assessment model, they are ‘empirically’ estimated and specified within a slightly simplified
population dynamics model used for projections. The key simplifications being the lack of females and
trawl mortality–the rest of the model structure matches the status quo population dynamics in appendix
A. The empirically estimated parameters of the population processes are not perfectly known. To represent
this uncertainty, 1000 Monte Carlo draws are performed for each of the population processes to develop
distributions for F35%.

Life history characteristics

Estimated parameters for growth, fishery selectivity, natural mortality, weight at length, and probability of
maturing are required to calculate F35%. Below is a description of the information available and the process
for estimating the parameters and uncertainty associated with the population processes used to calculate
F35%.

Natural mortality

Relatively few targeted studies exist to determine natural mortality for snow crab in the Bering Sea. In
one of these studies, Nevissi, et al. (1995) used radiometric techniques to estimate shell age from last molt
(Figure 34). The total sample size was 21 male crabs (a combination of Tanner and snow crab) from a
collection of 105 male crabs from various hauls in the 1992 National Marine Fishery Service (NMFS) Bering
Sea survey. Representative samples for the 5 shell condition categories were collected from the available
crab. Shell condition 5 crab (SC5 = very, very old shell) had a maximum age of 6.85 years (s.d. 0.58, 95%
CI approximately 5.69 to 8.01 years; carapace width of 110 mm). The average age of 6 crabs with SC4 (very
old shell) and SC5, was 4.95 years (range: 2.70 to 6.85 years).

Tag recovery evidence from eastern Canada revealed observed maximum ages in exploited populations of
17-19 years (Nevissi, et al. 1995, Sainte-Marie 2002). A maximum time at large of 11 years for tag returns
of terminally molted mature male snow crab in the North Atlantic has been recorded since tagging started
about 1993 (Fonseca, et al. 2008). Fonseca, et al. (2008) estimated a maximum age of 7.8 years post terminal
molt using data on dactal wear.

Inspection of the survey data suggests that natural mortality for mature individuals is relatively high. A
fraction of the mature population is not selected in the fishery (e.g. sizes 50-80 mm; Figure 35). Consequently,
all mortality observed is ‘natural’. The collapse in recruitment in the 1990s can be used as an instrument to
understand natural mortality for mature individuals. The last large recruitment enters these size classes in
the mid- to late-1990s and numbers of crab in these size classes return to low levels in less than 5 years.

Based on these pieces of information, the highest maximum age for snow crab in the Bering Sea is likely no
more than 20 years. However, it could also be less than that. Here, a rough estimate for the distribution
of potential maximum ages is generated by truncating a normal distribution with mean 20 and standard
deviation 3 at 20. This results in a distribution of potential maximum ages that has 75% of its density between
16.47 and 20 years (Figure 36), which overlaps acceptably with the above information. This distribution of



maximum ages translates to a distribution of natural mortality that has 75% of its density between 0.27 and
0.33 using the maximum age based empirical estimator from Then et al. 2015 -(Figure 36).

Weight at length

Weight at length is calculated by a power function, the parameters for which were recalculated by the
Shellfish Assessment Program in August 2016. No uncertainty was incorporated into the calculations of
F35% based on the weight at length data, but this may be revisited in the future.

Maturity

Maturity is an important determinant of SBPR-based reference points because it demarcates the fraction of
the population that constitutes the unfished biomass, which in turn determines the fishing mortality rates
that will deplete the population to target levels.

In the current snow crab assessment, maturity is defined as ‘morphometric’ maturity, which is determined
by chela height measurements. When male crab terminally molt, their claws (chela) are larger than an
immature crab of the same carapace width. Chela height measurements are available starting from the 1989
survey (Otto 1998), and annual probabilities of undergoing a terminal molt to maturity were provided by
the Kodiak Shellfish Laboratory using these data. The probability of maturing at a given size was calculated
by subsetting the survey data to only new shell males, then calculating the proportion of males with large
claws in a given year (Figure 37).

Morphometric maturity is one way to classify mature males, but the relative importance of morphometrically
mature males of different sizes in mating is unclear (i.e. does a 70 mm carapace morphometrically mature
male play the same role in reproduction as a 110 mm carapace width male?). Furthermore, old shell mature
males may be disproportionately important in reproduction. Paul et al. (1995) found that old shell mature
male Tanner crab out-competed new shell crab of the same size in breeding in a laboratory study. Recently
molted males did not breed even with no competition and may not breed until after ~100 days from molting
(Paul et al. 1995). Sainte-Marie et al. (2002) stated that only old shell males take part in mating for North
Atlantic snow crab.

An appreciable fraction of males can terminally molt to maturity starting around 60mm, which consequently
means that a large fraction of the morphometrically mature biomass is protected from the fishery by the
industry-preferred size of >101 mm carapace width. If the sub-preferred size males are included in the
biomass targets, this can result in high target fishing mortality rates on large individuals.

To test the sensitivity of F35% to the definition of maturity, four different probabilities of ‘maturing’ were
used:

• The assessment estimated probability of terminal molt, representing the idea that all morphometrically
mature animals are equally important in reproduction.

• The observed probabilities of terminal molt from 1990-2019 (with a few years missing due to a lack
of chela height measurements). When observed probabilities were used, a year of probabilities was
randomly sampled, then the entire projection to calculate F35% used that ogive. This also represents
the idea that all morphometrically mature animals are equally important in reproduction, but changes
the probability of becoming a morphometrically mature male at size.

• A knife-edged ogive that increases to a probability of 1 at 95 mm carapace width, representing the idea
that males over 95 mm are most important in reproduction.

• A knife-edged ogive that increases to a probability of 1 at 101 mm carapace width, representing the
idea that males over 101 mm are most important in reproduction.



Growth

Forty three pre- and post-molt data points are available to determine molt increment for male snow crab in
the Bering Sea. Size transition matrices were developed by bootstrapping the data 15 points at a time and
fitting a linear regression to predict post-molt carapace width from pre-molt carapace width. The resulting
pairs of intercepts and slopes were sampled randomly to generate size transition matrices. The variability
around a growth increment was defined using a discretized and re-normalized normal distribution with a
standard deviation of 4. This results in size transition matrices similar to, but not precisely the same as
those estimated in the assessment (Figure 38).

Fishery selectivity

Fishery selectivity has two components in the snow crab fishery: total and retained. Three data sources and
(at least) 1 critical assumption were used to calculate total and retained selectivity for the snow crab fishery.
The data include: total male numbers size composition data from the survey for the years for which observer
data are available (1992-present), the total size composition data from the fishery (1992-present), and the
retained size composition data from the fishery (1992-present). Fishery selectivity in a given year can be
inferred from the relative shapes of the size composition data with the assumption that the maximum density
in the catch size composition represents the first size class for which that selectivity is 1. This matches the
assumption of logistic selectivity in the integrated assessment.

A worked example might clarify the idea. The survey size composition provides the relative numbers at length
for the population and a reference for total selectivity (Figure 39). By assuming the maximum of the total
catch represents the first size class where total fishery selectivity is 1, we can place the survey size composition
data and the total size composition data on the same scale by rescaling each of the size compositions by a
(different) constant that forces the value in the size class that is the maximum in total selectivity to equal
one for both size compositions. The third panel of Figure 39 shows this transformation. Finally, the scaled
total size composition is divided by the scaled survey composition to produce the inferred selectivity (bottom
panel of Figure 39). Selectivities after the maximum of the unscaled catch size composition can be less than
or greater than 1 (see bottom panel). In order to avoid cryptic biomass, all selectivity at size after the
maximum of the total catch size composition is set to 1.

Comparison of empirical estimates to assessment estimates

Each of the processes estimated from the above methods has an estimated counterpart in the assessment and,
although the estimates from the assessment and the empirical exercises are similar, they do not all perfectly
match. For example, the assessment estimates of the probability of maturing are somewhat lower over the
70 mm to 95 mm carapace width range (Figure 37) and the size transition matrices are slightly different
(Figure 38). The estimated total fishery selectivity from the assessment is shifted to the right of most of
the ‘empirical’ estimates (Figure 40), but the assessment estimates of retained fishery selectivity are closer
to the median of the observed (Figure 41). Although retained selectivity is closer to the observed, there is a
clear difference over time with respect to rationalization. The respective assumptions made by both methods
can result in different estimates for population processes. For example, the integrated assessment is fitting
many data sources, so there can be tradeoffs between fits that are reflected in the estimates of parameters
determining population processes. This does not happen in the ‘empirical’ analyses.

‘Empirical’ F35%

Distributions of F35% for different assumptions of reproductive contribution and fishery selectivity were
developed by specifying distributions of each of the axes of variability (natural mortality, growth, maturity,
fishery selectivity), then performing 1000 simulations in which the parameters determining each of theses
processes were randomly drawn from the specified distributions. The random samples were held constant in



the projected population dynamics model and unfished biomass was projected given a constant recruitment.
Then the fishing mortality that reduces the biomass to 35% of the unfished levels was found by the bisection
method. This is the same methodology that occurs within the assessment method, only the parameters
governing the population processes are specified based on analyses outside of the model.

Distributions of F35% varied widely based on the assumptions of what size of animals are important re-
productively (Figure 42; fishing mortalities are translated to exploitation rates for ease of comparison in
this figure). If only males greater than 101mm carapace width define the ‘reproductive’ stock, the median
exploitation rate at which the number of 101mm carapace width males is reduced to 35% of unfished levels
is 37%. If males greater than or equal to 95 mm carapace width are used, the exploitation rate increases to
52%. A target exploitation rate of 77% is produced when using the estimates of the probability of maturing
from the assessment and this increases to >99% if the observed probabilities of maturing are used. These
values are all calculated given the observed fishery selectivity for all years. Retained selectivity shifted to
the right after rationalization, representing a more selective fishing process (Figure 41). If only the years of
selectivity after rationalization are used, the calculated target exploitation rates all shift ~3% to the right.

The exploitation rate equal to the F35% calculated inside the integrated assessment in 2020 was 79%. This is
very close the median of the distribution when the inputs to the SBPR calculations come from the assessment
(77%). This suggests that the differences in the population dynamics models and the impact of sampling
natural mortalities were relatively small.

G. OFL and ABC

Tier 3

The OFLs for the status quo and GMACS models were calculated using proxies for biomass and fishing
mortality reference points and a sloped control rule. Proxies for biomass and fishing mortality reference
points were calculated using spawner-per-recruit methods (e.g. Clark, 1991). After fitting the assessment
model to the data and estimating population parameters, the model was projected forward 100 years using
the estimated parameters under no exploitation to determine ‘unfished’ mature male biomass-per-recruit.
Projections were repeated in which the bisection method was used to identify a fishing mortality that reduced
the mature male biomass-per-recruit to 35% of the unfished level (i.e. F35% and B35%). Calculations of F35%
were made under the assumption that bycatch fishing mortality was equal to the estimated average value.
In models for which natural mortality or catchability varied over time, the average of the last 7 years of
estimates of the varying process were used to calculate reference points. This is all similar to the procedure
used for the empirical analysis, but bycatch mortality was not considered and time-variation was addressed
through the Monte Carlo sampling.

Calculated values of F35% and B35% were used in conjunction with a Tier 3 control rule to adjust the
proportion of F35% that is applied based on the status of the population relative to B35% (Amendment 24,
NMFS).

FOFL =



Bycatch if MMB
MMB35

≤ 0.25

F35( MMB
MMB35

−α)
1−α if0.25 < MMB

MMB35
< 1

F35 ifMMB > MMB35

(2)

Where MMB is the projected mature male biomass in the current survey year after fishing at the FOFL,
MMB35% is the mature male biomass at the time of mating resulting from fishing at F35%, F35% is the fishing
mortality that reduces the mature male biomass per recruit to 35% of unfished levels, and α determines the
slope of the descending limb of the harvest control rule (set to 0.1 here).



The calculated OFLs for the Tier 3 models ranged from 14 to 184 kt (Table 7). Although allowing for time-
variation in natural mortality and catchability reduced the retrospective patterns in MMB, the resulting
management advice could be drastically different. Model 20.2q and 20.2m produced OFLs that were 75-85%
of the OFL produced from model 20.2. Model 20.2mq, however, was only 15% of the OFL from model 20.2.
Much higher natural mortalities for the projection used to calculate F35% resulting from high estimates of
M at the end of the survey time series produced very high target fishing mortalities (6.29 and 12.46 for
model 20.2m and 20.2mq, respectively). Changing the smoothing penalty in 20.2m from 1 to 10 resulted in
an OFL similar to 20.2mq (12.3 vs. 14, respectively).

Tier 4

The Tier 4 harvest control rule is similar to the Tier 3 rule, except the input target fishing mortality,
target biomass, and current biomass are calculated differently (described above). Given no survey biomass
estimates were available in 2020, the OFLs presented to demonstrate this methodology are for 2019. For
reference, the OFL produced from the 2019 integrated assessment was 54.9 kt, ADFG set the TAC at 15.4
kt, and assessment estimated MMB, BMSY, F35% were 111.4, 126.1, 1.93, respectively.

Table 1: Management quantities from Tier 4 methods with vary-
ing assumptions. Row names represent the smallest size of crab
included in the index. MMB in row names ending in ’_q’ was ad-
justed by a catchability similar to that implied from the BSFRF
experiments. All weights are given in 1000 tonnes.

MMB BMSY Status F35 FOFL OFL
78mm 175 162.9 1.07 1.64 1.64 119.2
95mm 54.5 98.04 0.56 0.81 0.41 15.52
101mm 28.9 71.32 0.41 0.47 0.16 3.56
78mm_q 350 325.9 1.07 1.64 1.64 238.4
95mm_q 109 196.1 0.56 0.81 0.41 31.05
101mm_q 57.8 142.6 0.41 0.47 0.16 7.13

The OFLs produced via this methodology ranged from 3.6 kt to 239 kt. The largest OFLs were produced
when accounting for NMFS survey catchability, which doubled the MMB. When >78mm carapace width crab
were considered to be the reproductively important portion of the population, the status of the population
and OFLs were much higher. This is because the 2015 cohort was just starting to enter this size class in
2019, so there was an uptick in the biomass. This was not seen for >95mm or >101mm carapace width crab,
which were still at historically low levels.

These methods are applied as other Tier 4 methodologies are (i.e. the proxy for FMSY is applied directly
to the measure of MMB after decrementing the population by the appropriate number of months of natural
mortality), but room for improvement exists. First, F35% was calculated for each scenario with a measure
of fishery selectivity. So, when the FOFL is applied to the MMB , the fishery selectivity should be accounted
for. This could be relatively easily done by pulling the terminal year survey size composition data into
the calculation of the OFL after the FOFL is calculated. The uncertainty in the OFL could also be better
represented by developing distributions for the OFL in a similar manner to the distributions for F35%.
Instead of sampling population processes, MMB, F35 and BMSY would be sampled.



H. Risk table

The following template is used to complete the risk table:

Assessment
related

considerations

Population
dynamics

considerations

Environmental
ecosystem

considerations
Fishery

Performance
Level 1: Normal Typical to

moderately
increased

uncertainty or
minor unresolved

issues in
assessment.

Stock trends are
typical for the
stock; recent
recruitment is
within normal

range.

No apparent
environmental or

ecosystem
concerns

No apparent
fishery

resource-use
performance

and/or behavior
concerns

Level 2:
Substantially
increased
concerns

Substantially
increased
assessment
uncertainty/

unresolved issues.

Stock trends are
unusual;

abundance
increasing or

decreasing faster
than has been
seen recently, or
recruitment
pattern is
atypical.

Some indicators
showing adverse
signals relevant to
the stock but the
pattern is not

consistent across
all indicators.

Some indicators
showing adverse
signals but the
pattern is not

consistent across
all indicators

Level 3: Major
Concern

Major problems
with the stock
assessment; very
poor fits to data;

high level of
uncertainty;

strong
retrospective bias.

Stock trends are
highly unusual;

very rapid
changes in stock
abundance, or
highly atypical
recruitment
patterns.

Multiple
indicators
showing

consistent adverse
signals a) across
the same trophic
level as the stock,
and/or b) up or
down trophic
levels (i.e.,

predators and
prey of the stock)

Multiple
indicators
showing

consistent adverse
signals a) across
different sectors,

and/or b)
different gear

types

Level 4:
Extreme concern

Severe problems
with the stock

assessment; severe
retrospective bias.

Assessment
considered
unreliable.

Stock trends are
unprecedented;
More rapid

changes in stock
abundance than
have ever been
seen previously,
or a very long
stretch of poor
recruitment
compared to

previous patterns.

Extreme
anomalies in
multiple
ecosystem

indicators that
are highly likely
to impact the
stock; Potential
for cascading
effects on other

ecosystem
components

Extreme
anomalies in
multiple

performance
indicators that
are highly likely
to impact the

stock

The table is applied by evaluating the severity of four types of considerations that could be used to support a
scientific recommendation to reduce the ABC from the maximum permissible. These considerations are stock
assessment considerations, population dynamics considerations, environmental/ecosystem considerations,



and fishery performance. Examples of the types of concerns that might be relevant include the following:

1. Assessment considerations—data-inputs: biased ages, skipped surveys, lack of fishery-independent
trend data; model fits: poor fits to fits to fishery or survey data, inability to simultaneously fit multiple
data inputs; model performance: poor model convergence, multiple minima in the likelihood surface,
parameters hitting bounds; estimation uncertainty: poorly-estimated but influential year classes; ret-
rospective bias in biomass estimates.

2. Population dynamics considerations—decreasing biomass trend, poor recent recruitment, inability of
the stock to rebuild, abrupt increase or decrease in stock abundance.

3. Environmental/ecosystem considerations—adverse trends in environmental/ecosystem indicators,
ecosystem model results, decreases in ecosystem productivity, decreases in prey abundance or
availability, increases or increases in predator abundance or productivity.

4. Fishery performance—fishery CPUE is showing a contrasting pattern from the stock biomass trend,
unusual spatial pattern of fishing, changes in the percent of TAC taken, changes in the duration of
fishery openings.”

Assessment considerations

Several assessment considerations exist for snow crab. As with all Bering Sea stocks, the 2020 survey data
are missing for snow crab and analyses in September 2020 showed that the snow crab is particularly sensitive
to missing survey data, particularly in the terminal years of the time series. This sensitivity is related to the
second serious assessment consideration for snow crab: large retrospective patterns. Mohn’s rho for MMB
has ranged from 0.36 to upwards of 0.80 since retrospective analyses began being performed for this stock.
Severing the link in recruitment for sexes improved the retrospective pattern in MMB, but did not entirely
fix it. Finally, regardless of which model is chosen (GMACS vs. status quo), the estimated survey MMB
misses the confidence intervals for 5 of the last 6 years. For these reasons, this element is given a score of 3.

Population dynamics considerations

The key population dynamics consideration for snow crab is uncertainty around the size of the cohort
currently entering the exploitable biomass. In 2015, the largest cohort observed in the history of the survey
recruited to the survey gear. The survey selectivity is low for small crab, so the cohort size in that first year
was uncertain, but the cohort was tracked and developed until 2018, when the number of crab at ~50mm
carapace width was the largest ever observed. The cohort appeared much smaller in 2019, presumably either
due to a change in catchability or natural mortality. Given no data were collected in 2020, the fate of this
cohort remains a mystery. The unprecedented size and uncertainty around this cohort earns this element a
score of 4.

Environmental/ecosystem considerations

No immediate red flags are apparent, primarily because it is not clear what indicators would be appropriate
for use as red (or green) flags. This element is given a score of 1.

Fishery performance

Fishery CPUEs have been on a general decline after a large peak post-rationalization in 2005. The fishery
CPUE in the 2020/21 season was higher than the long-term average, but high CPUEs were sustained
by fishing in statistical areas farther north than are usually productive. Because of the shift in spatial
distribution of the fishery, this element is given a score of 2.



Assessment related
considerations

Population dynamics
considerations

Environmental
ecosystem

consideration
Fishery Performance

considerations
Level 3: Major

concerns
Level 4: Extreme

concern
Level 1: no increased

concerns
Level 2: Substantially
increased concerns

I. Summary and recommendations

Although the exercises outlined in this document did not present a clear path for addressing the retrospective
patterns in the integrated snow crab assessment, several useful things were learned.

Allowing additional time variation in population processes in the integrated assessment did improve ret-
rospective patterns and fits to the survey biomass. However, without more data, it is difficult to justify
choosing one process to vary over another (or both). Coupled with the fact that the management advice
produced can be drastically different, just adding more structure to the model does not seem like a viable
path for September 2021 model scenarios.

The ‘empirical’ exercise in developing distributions for F35% reaffirmed how important the metric for ‘ma-
turity’ used is in defining reference points. Target exploitation rates ranged from 37% to 100% on fishery-
selected biomass depending on what size of crab were considered important in reproduction. Understanding
what part of the population is reproductively important is a key piece of information needed to understand
what portion of the population needs to be protected.

The empirical exercise also showed that the estimates from the assessment for some key processes like fishery
selectivity and the probability of maturing were different than implied by the input data. Differences in
empirical selectivity may be a result of the assumptions made in calculating it and sensitivities to this
assumption should be performed. It was less clear why the empirical probability of maturing was different
from the estimates from the assessment. Regardless of the difference, it appears that, in addition to natural
mortality and catchability, the probability maturing and fishery selectivity (particularly retained selectivity)
appear to vary over time. Retained selectivity underwent a step change around rationalization and this
change should be incorporated in whatever assessment is used going forward. More research is needed on the
timing of transitions between maturity states and I am looking forward to the coming BSFRF symposium
on the issue.

Generally, fitting multiple data sources in an integrated model is preferable when data are available to
parameterize the model such that variation in the modeled processes are informed sufficiently enough to be
estimated. Fitting multiple data sources at once allows the uncertainty in each process to be propagated
appropriately, but also requires that the model is appropriately structured to make inference about population
processes. This can be difficult if processes are confounded (like growth, natural mortality, and catchability).
If confounded processes are also varying over time, estimating this variation can be exceptionally difficult
(e.g. Johnson et al., 2014).

It is often thought that estimates of population processes can be improved by fitting multiple data sources
because the information content in multiple data sources can corroborate and clarify the role of different
processes in the population dynamics. This works well if the model is well-specified, but if it is not, estimating
within an integrated assessment could result in incorrect inference about population processes. This could
be one of the reasons that the empirical estimates differ from the assessment estimates of some population
processes. The Tier 4 methods bypass the need to model the time-variation in population processes, and
assumes that any time-variation in population processes will be faithfully represented in the observed size
composition and survey biomass. This does not necessarily mean that the survey is an accurate absolute
index of abundance, and it still may need to be scaled by a measure of catchability.

One of the key uncertainties is that we do not know if the variability observed in the survey biomass is caused
primarily by issues related to the survey methods (e.g. time-varying catchability or measurement error) or
by issues related to population dynamics (e.g. time-varying natural mortality or other sorts of process error).



This issue will not be solved by September, so, only two of the three commonly used options to address
retrospective patterns are recommended. First, performing integrated assessments without time-varying M
or q (but including time-varying fishery selectivity) could be coupled with post hoc revisions of management
advice based on the magnitude of retrospective patterns. Secondly, a modified Tier 4 approach that uses the
information available on variability in population processes to calculate distributions for F35% could also be
useful.
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Appendix A: Status quo assessment model population dynamics

Numbers of sex s of shell condition v and maturity state m at length l in the initial year of the assessment,
Ns,v,m,y=1,l , were calculated from an estimated vector of numbers at length l by sex s and maturity state m
for males, λs,m,l and numbers at length l by sex s and shell condition v for females (i.e. 2 vectors for each sex
were estimated). Estimated vectors of initial numbers at length by maturity for females were calculated by
splitting the estimated vectors at length by the observed proportion mature in the first year of the survey.

Ns,v,m,y=1,l =



Ωobss,l λs,1,l if v = new; m = mat, s = fem

1− Ωobss,l λs,1,l if v = new; m = imat, s = fem

λs,2,l if v = old; m = mat, s = fem

0 if v = old; m = imat

(3)

Initial numbers at length for males were all assumed to be new shell.

Ns,v,m,y=1,l =



λs,1,l if v = new; m = mat, s = male

λs,2,l if v = new; m = imat, s = male

0 if v = old; m = mat, s = male

0 if v = old; m = imat, s = male

(4)

The dynamics after the initial year were described by:

Ns,v,m,y+1,l =



Ωs,lκs,l′Qs,imat,y,l′Xs,l′,l if v = new; m = mat

1− Ωs,lκs,l′Qs,imat,y,l′Xs,l′,l +RecεyPrl if v = new; m = imat

Qs,mat,y,l′ if v = old; m = mat

(1− κs,l′)Qs,imat,y,l′ if v = old; m = imat

(5)

Where Ωs,l was the probability of maturing at length l for sex s (a freely estimated vector for both males
and females constrained by penalties on smoothness), κs,l′ was the probability of molting for an immature
crab of sex s at length l’ (set to 1 for all immature crab), and Xs,l,l’ was the size transition matrix describing
the probability of transitioning from size l’ to size l for sex s. Qs,m,y,l’ was the number of crab of sex s,
maturity state m, and length l’ surviving natural and fishing mortality during year y:

Qs,m,y,l =
∑
v

Ns,v,m,y,le
Zs,v,m,y,l (6)

Where Ns,v,m,y,l represented the numbers, N, of sex s during year y of shell condition v and maturity state m
at length l. Zs,v,m,y,l represented the total mortality experienced by the population and consisted of the sum
of instantaneous rates of natural mortality by sex and maturity state, Ms,m, and fishing mortality, Fs,f,y,l
from each fishery. Each fishing mortality was subject to selectivity by length l, which varied between sexes
s and fisheries f (and by year y if specified) . Ms,m was specified in the model and a multiplier γnatM,m was
estimated subject to constraints (see this formulation effectively specified a mean and standard deviation for
a prior distribution for M).



Zs,v,m,y,l = γnatM,mMs,m +
∑
f

Ss,f,y,lFs,f,y,l (7)

Selectivities in the directed and bycatch fisheries were estimated logistic functions of size. Different selec-
tivity parameters were estimated for females and males in the directed fisheries (Sfem,dir,l and Smale,dir,l ,
respectively), a single selectivity for both sexes was estimated for bycatch in the groundfish trawl fishery
(Strawl,l), and a retention selectivity was estimated for the directed fishery for males (Rdir,l ; all females were
discarded).

Smale,dir,l = 1
1 + e−Sslope,m,d(Ll−S50,m,d

) (8)

Sfem,dir,l = 1
1 + e−Sslope,f,d(Ll−S50,f,d

) (9)

Strawl,l = 1
1 + e−Sslope,t(Ll−S50,t

) (10)

Rdir,l = 1
1 + e−Sslope,m,d(Ll−S50,m,d

) (11)

Where Sslope,s,f was the slope of the logistic curve for sex s in fishery f and S50,s,f was the length at 50%
selection for sex s in fishery f. Catches for all fisheries were modeled as pulse fisheries in which all catch was
removed instantaneously (i.e. no natural mortality occurred during the fishery). Catch in fishery f during
year y was calculated as the fraction of the total fishing mortality, Fs,f,y,l , applied to a given sex s in a fishery
f times the biomass removed by all fisheries for that sex.

Cmale,dir,y =
∑
l

∑
v

∑
m

wmale,l
RlFmale,dir,y,l

Fmale,dir,y,l + Ftrawl,y,l
Nmale,v,m,y,le

−δyMs,m(1− e−(Fmale,dir,y,l+Ftrawl,y,l))

(12)

Cmale,tot,y =
∑
l

∑
v

∑
m

wmale,l
Fmale,dir,y,l

Fmale,dir,y,l + Ftrawl,y,l
Nmale,v,m,y,le

−δyMs,m(1− e−(Fmale,dir,y,l+Ftrawl,y,l))

(13)

Cfem,dir,y =
∑
l

∑
v

∑
m

wfem,l
Ffem,dir,y,l

Ffem,dir,y,l + Ftrawl,y,l
Nfem,v,m,y,le

−δyMs,m(1− e−(Ffem,dir,y,l+Ftrawl,y,l))

(14)

Cm+f,trawl,y =
∑
s

∑
l

∑
v

∑
m

ws,lNs,v,m,y,le
−δyMs,m(1− e−(Ftrawl,y,l)) (15)

Where δy was the mid point of the fishery (all fisheries were assumed to occur concurrently and the midpoint
was based on the directed fishery, which accounts for the vast majority of the fishing mortality) and ws,l
was the weight at length l for sex s. Trawl data and discard data were entered into the model with an
assumed mortality of 80% and 30%, respectively. Fully-selected fishing mortality parameters for fishery f
were estimated as a logged average over a given time period (F logavg) with yearly deviations around that mean
(F logdev,y).

Ff,y = e(F log
avg,f

+F log
dev,f,y

) (16)

Selectivity for the survey was estimated for 2 eras in the base model: 1982-1988 and 1989-present. Selectivity
was assumed to be logistic and separate parameters representing the length at which selection probability



equal 50% and 95% (s50,s,e and s95,s,e, respectively) were estimated for males and females in the third era
(1989-present). Separate catchability coefficients (qs,e) were estimated for males and females in all eras.

Ssurv,s,l,e = qs,e

1 + e
−log(19) Ll−s50,s,e

s95,s,e−s50,s,e

) (17)

Survey selectivity was informed by experimental surveys during the years 2009 and 2010. A portion of the
NMFS summer survey tows were accompanied by an industry vessel using nephrops trawls with an assumed
selectivity of 1 for all size classes. To represent the proportion of the population covered by the experiment,
a vector was freely estimated for males, Sfreey (subject to a scaling parameter), and a logistic curve was
estimated for females.

Sind,s,l,y =


qind,s,y

1+e
−log(19)

Ll−s50,s,y
s95,s,y−s50,s,y

) if s = female

qind,s,yS
free
y if s = male

(18)

Based on this logic, after identifying the fraction of the crab at length covered by the experimental surveys,
the length frequencies of the NMFS data collected simultaneously with the experimental trawls can be
calculated by multiplying the numbers at length ‘available’ to the experimental trawls by the overall survey
selectivity, Ssurv,s,l,y. The predicted numbers at length for the NMFS and industry data from the selectivity
experiment were calculated by multiplying the respective selectivities by the survey numbers at length.

Snmfs,s,l,y = Sind,s,l,ySsurv,s,l,y (19)

Mature male and female biomass (MMB and FMB, respectively) were fitted in the objective function and
were the product of mature numbers at length during year y and the weight at length, ws,l :

MMBy =
∑
l,v

wmale,lNmale,v,mat,y,l (20)

FMBy =
∑
l,v

wfem,lNfem,v,mat,y,l (21)

ws,l =αwt,sL
βwt,s
l (22)

Mature biomass can be calculated for different time through out the year, in which case the numbers at
length are decremented by the estimated natural mortality. Parameters αwt,s and βwt,s were estimated
outside of the assessment model and specified in the control file.

Molting and growth occur before the survey. Immature crab were assumed to molt every year with an
estimated probability of molting to maturity based on length l (in all the scenarios presented here, the
probability of molting was 1 for all immature animals). For crab that do molt, the growth increment
within the size-transition matrix, Xs,l,l’ , was based on a piece-wise linear relationship between predicted
pre- and post-molt length, (L̂preds,l and L̂posts,l , respectively) and the variability around that relationship was
characterized by a discretized and renormalized gamma function, Ys,l,l’ .

Xs,l,l′ = Ys,l,l′∑
l′ Ys,l,l′

(23)

Ys,l,l′ = (∆l,l′)
ˆLs,l−(L̄l−2.5)

βs (24)

L̂post,1s,l = αs + βs,1Ll (25)



L̂post,2s,l = αs + δs(βs,1 − βs,2) + βs,2Ll (26)

L̂posts,l = L̂post,1s,l (1− Φ(Ll − δa,x
stgr

)) + L̂post,2s,l (Φ(Ll − δa,x
stgr

)) (27)

∆l,l′ = L̄l′ + 2.5− Ll (28)

L̂post,1s,l and L̂post,2s,l were predicted post-molt lengths from each piece of the piece-wise relationship, and Φ()
was a cumulative normal distribution in which δa,x was an estimated change point. The model in which
linear growth was estimated removed equations 26 and 27 from the model.

An average recruitment for the assessment period (1982-present) and yearly deviations around this average
were estimated within the assessment for models in which only a single vector of recruitment deviations was
estimated. The sex ratio of recruitment was assumed to be 50/50 male to female. Each year’s estimated
recruitment was allocated to length bins based on a discretized and renormalized gamma function with
parameters specified in the control file.

Recy = e(Recavg+Recdev,y) (29)

Prl = (∆1,l)αrec/βrece−∆1,l′/βrec∑
l′(∆1,l′)αrec/βrece(−∆1,l′/βrec)

(30)

For models in which separate vectors of recruitment deviations were estimated for males and females, a
separate average recruitment was also estimated (in log space). Each vector of deviations was also subject
to a smoothing penalty, but were not linked directly in any way (e.g. priors on the ratio of estimated male
to female average recruitment).

Three general types of likelihood components were used to fit to the available data. Multinomial likelihoods
were used for size composition data, log-normal likelihoods were used for indices of abundance data, and
normal likelihoods were used for catch data, growth data, priors, and penalties. Multinomial likelihoods
were implemented in the form:

Lx = λx
∑
y

Neff
x,y

∑
l

pobsx,y,lln(p̂x,y,l/pobsx,y,l) (31)

Lx was the likelihood associated with data component x, where λx represented an optional additional weight-
ing factor for the likelihood, Neff

x,y was the effective sample sizes for the likelihood, pobsx,y,l was the observed
proportion in size bin l during year y for data component x, and p̂x,y,l was the predicted proportion in size
bin l during year y for data component x.

Log normal likelihoods were implemented in the form:

Lx = λx
∑
y

(ln(Îx,y)− ln(Ix,y))2

2(ln(CV 2
x,y + 1)) (32)

Lx was the contribution to the objective function of data component x, λx was any additional weighting
applied to the component, Îx,y was the predicted value of quantity I from data component x during year y,
Ix,y was the observed value of quantity I from data component x during year y and CVx,y was the coefficient
of variation for data component x during year y.

Normal likelihoods were implemented in the form:

Lx = λx
∑
y

(Îx,y − Ix,y)2 (33)



Lx was the contribution to the objective function of data component x, λx was represents the weight applied
to the data component (and can be translated to a standard deviation), Îx,y was the predicted value of
quantity I from data component x during year y, Ix,y was the observed value of quantity I from data
component x during year y.

Smoothing penalties were also placed on some estimated vectors of parameters in the form of normal likeli-
hoods on the second differences of the vector.

Appendix B: GMACS basic population dynamics

The basic dynamics of GMACS account for growth, mortality, maturity state, and shell condition (although
most of the equations omit these indices for simplicity):

Nhji = ((I−Phji−1) + Xhji−1Phji−1)Shji−1Nhji−1 + R̃hji (34)

where Nhji is the number of animals by size-class of sex h at the start of season j of year i, Phji is a matrix
with diagonals given by vector of molting probabilities for animals of sex h at the start of season j of year i,
Shji is a matrix with diagonals given by the vector of probabilities of surviving for animals of sex h during
time-step j of year i (which may be of zero duration):

Shjil = exp (−Zhjil) (35)

Shjil = 1− Zhjil

Z̃hjil
(1− exp (−Zhjil)) (36)

Xhji is the size-transition matrix (probability of growing from one size-class to each of the other size-classes
or remaining in the same size class) for animals of sex h during season j of year i, R̃hji is the recruitment
(by size-class) to gear g during season j of year i (which will be zero except for one season – the recruitment
season), Zhjil is the total mortality for animals of sex h in size- class l during season j of year i, and Z̃hjil
is the probability of encountering the gear for animals of sex h in size-class l during season j of year i.
Equation 34 applies when mortality is continuous across a time-step and equation 35 applies when a time-
step is instantaneous. Equation 33 can be modified to track old and new shell crab (under the assumption
that both old and new shell crab molt), i.e.:

Nnew
hji = Xhji−1Phji−1Shji−1

(
Nnew
hji−1 +Nold

hji−1
)

+ R̃hji (37)
Nold
hji = (I−Phji−1)Shji−1Phji−1

(
Nnew
hji−1 +Nold

hji−1
)

(38)

Equation 33 can be also be modified to track mature and immature shell crab (under the assumption that
immature crab always molt and mature crab never molt and Phji now represents the probability of molting
to maturity), i.e.:

Nmat
hji = Xhji−1Shji−1Phji−1N

imm
hji−1 + Shji−1N

mat
hji−1N

imm
hji = Xhji−1Shji−1(I−Phji−1)N imm

hji−1 + Shji−1N
mat
hji−1

(39)

There are several ways to specify the initial conditions for the model (i.e., the numbers-at- size at the start
of the first year, i1).

• An equilibrium size-structure based on constant recruitment and either no fishing for any of the fleets
or (estimated or fixed) fishing mortality by fleet. The average recruitment is an estimated parameter
of the model.



• An individual parameter for each size- class, i.e.: Nhi11 = exp(δhi1l)

• An overall total recruitment multiplied by offsets for each size-class, i.e.:

Nhi11 = Rinitexp(δhi1l)∑
h′
∑
l′ exp(δhi1l′)

(40)

Recruitment occurs once during each year. Recruitment by sex and size-class is the product of total recruit-
ment, the split of the total recruitment to sex and the assignment of sex-specific recruitment to size-classes,
i.e.:

R̃hjil = R̄eεi

(1 + eθi)−1phl if h = males

θi(1 + eθi)−1phl if h = females
(41)

where R̄ is median recruitment, θi determines the sex ratio of recruitment during year i, and phl is the
proportion of the recruitment (by sex) that recruits to size-class l:

phil =
∫ Lhigh

Llow

le−l/βh
βh

(αh/βh)−1

Γ(αh/βh) dl (42)

where αh and βh are the parameters that define a gamma function for the distribution of recruits to size-class
l. Equation 41 can be restricted to a subset of size-classes, in which case the results from Equation 41 are
normalized to sum to 1 over the selected size-classes.

Total mortality is the sum of fishing mortality and natural mortality, i.e.:

Zhijl = ρijMhiM̃l +
∑
f

Sfhijl(λfhijl + Ωfhijl(1− λfhijl))Ffhijl (43)

where ρij is the proportion of natural mortality that occurs during season j for year i, Mhi is the rate of
natural mortality for year i for animals of sex h (applies to animals for which M̃l = 1), M̃l is the relative
natural mortality for size-class l, Sfhijl is the (capture) selectivity for animals of sex h in size- class l by fleet
f during season j of year i, λfhijl is the probability of retention for animals of sex h in size-class l by fleet
f during season j of year i, Ωfhijl is the mortality rate for discards of sex h in size-class l by fleet f during
season j of year i, and Ffhijl is the fully-selected fishing mortality for animals of sex h by fleet f during
season j of year i.

The probability of capture (occurs instantaneously) is given by:

Z̃hijl =
∑
f

SfhijlFfhij (44)

Note that Equation 43 is computed under the premise that fishing is instantaneous and hence that there is
no natural mortality during season j of year i. The logarithms of the fully-selected fishing mortalities by
season are modelled as:

ln(Ffhij) = ln(Ffh) + εfhij if h = males (45)

ln(Ffhij) = ln(Ffh) + θf + εfhij if h = females (46)



where Ffh is the reference fully-selected fishing mortality rate for fleet f , θf is the offset between female and
male fully-selected fishing mortality for fleet f , and εfhij are the annual deviation of fully-selected fishing
mortality for fleet f (by sex). Natural mortality can depend on time according to several functional forms:

• Natural mortality changes over time as a random walk, i.e.:

Mhi =

Mhi1 if i = i1

Mhi−1e
ψhi otherwise

(47)

where Mhi1 is the rate of natural mortality for sex h for the first year of the model, and ψhi is the annual
change in natural mortality.

• Natural mortality changes over time as a spline function. This option follows Equation 46, except
that the number of knots at which ψhi is estimated is specified.

• Blocked changes. This option follows Equation 46, except that ψhi changes between ‘blocks’ of years,
during which ψhi is constant.

• Blocked natural mortality (individual parameters). This option estimates natural mortality as param-
eters by block, i.e.:

Mhi = eψhi (48)

where ψhi changes in blocks of years.

• Blocked offsets (relative to reference). This option captures the intent of the previous option, except
that the parameters are relative to natural mortality in the first year, i.e.:

Mhi = Mhi1e
ψhi (49)

It is possible to ‘mirror’ the values for the ψhi parameters (between sexs and between blocks), which allows
male and female natural mortality to be the same, and for natural mortality to be the same for discontinuous
blocks (based on Equations 47 and 48). The deviations in natural mortality can also be penalized to avoid
unrealistic changes in natural mortality to fit ‘quirks’ in the data.

The model keeps track of (and can be fitted to) landings, discards, total catch by fleet, whose computation
depends on whether the fisheries in season t are continuous or instantaneous.

CLandfhijl =


λfhijlSfhijlFfhijl

Zhijl
Nfhijl(1− e−Ẑhijl) if continuous

λfhijlSfhijlFfhijl
Zhijl

Nfhijl(1− e−Zhijl) if instantaneous
(50)

CDiscfhijl =


(1−λfhijl)SfhijlFfhijl

Zhijl
Nfhijl(1− e−Ẑhijl) if continuous

(1−λfhijl)SfhijlFfhijl
Zhijl

Nfhijl(1− e−Zhijl) if instantaneous
(51)



CTotfhijl =


SfhijlFfhijl

Zhijl
Nfhijl(1− e−Ẑhijl) if continuous

SfhijlFfhijl
Zhijl

Nfhijl(1− e−Zhijl) if instantaneous
(52)

Landings, discards, and total catches by fleet can be aggregated over sex (e.g., when fitting to removals
reported as sex-combined). Equations 49-51 are extended naturally for the case in which the population is
represented by shell condition and/or maturity status (given the assumption that fishing mortality, retention
and discard mortality depend on sex and time, but not on shell condition nor maturity status). Landings,
discards, and total catches by fleet can be reported in numbers (Equations 49-51) or in terms of weight. For
example, the landings, discards, and total catches by fleet, season, year, and sex for the total (over size-class)
removals are computed as:

CLandfhij =
∑
l

CLandfhijlwhil (53)

CDiscfhij =
∑
l

CDiscfhijlwhil (54)

CTotalfhij =
∑
l

CTotalfhijl whil (55)

(56)

where CLandfhij , CDiscfhij , and CTotalfhij are respectively the landings, discards, and total catches in weight by fleet,
season, year, and sex for the total (over size-class) removals, and whil is the weight of an animal of sex h in
size-class l during year i.

Many options exist related to selectivity (the probability of encountering the gear) and retention (the prob-
ability of being landed given being captured). The options for selectivity are:

• Individual parameters for each size-class (in log-space); normalized to a maximum of 1 over all size-
classes (if indicated).

• Individual parameters for a subset of the size-classes (in log-space). Selectivity must be specified for a
contiguous range of size-classes starting with the first size-class. Selectivity for any size-classes outside
of the specified range is set to that for last size-class for which selectivity is treated as estimable.

• Logistic selectivity. Two variants are available depending of the parametrization:

Sl = 1
1 + exp( ln19(L̄l−S50)

S95−S50
)

(57)

Sl = 1
1 + exp( (L̄l−S50)

σS
)

(58)

where S50 is the size corresponding to 50% selectivity, S95 is the size corresponding to 95% selectivity, σS is
the “standard deviation” of the selectivity curve, and L̄l is the midpoint of size-class l.

• All size-classes are equally selected.
• Selectivity is zero for all size-classes.



It is possible to assume that selectivity for one fleet is the product of two of the selectivity patterns. This
option is used to model cases in which one survey is located within the footprint of another survey. The
options to model retention are the same as those for selectivity, except that it is possible to estimate an
asymptotic parameter, which allows discard of animals that would be “fully retained” according to the
standard options for (capture) selectivity. Selectivity and retention can be defined for blocks of contiguous
years. The blocks need not be the same for selectivity and retention, and can also differ between fleets and
sexs.

Growth is a key component of any size-structured model. It is modelled in terms of molt probability and
the size-transition matrix (the probability of growing from each size-class to each of the other size-classes,
constrained to be zero for sizes less than the current size). Note that the size-transition matrix has entries
on its diagonal, which represent animals that molt but do not change size-classes

There are four options for modelling the probability of molting as a function of size:

• Pre-specified probability
• Individual parameters for each size-class (in log-space)
• Constant probability
• Logistic probability, i.e.:

Pl,l = 1
1− (1 + exp( L̄l−P50

σP
))

(59)

where P50 is the size at which the probability of molting is 0.5 and σP is the “standard deviation” of the
molt probability function. Molt probability is specified by sex and can change in blocks.

The proportion of animals in size-class l that grow to be in size-class l′ (Xl,l′) can either be pre-specified by
the user or determined using a parametric form:

• The size-increment is gamma-distributed:

Xl,l′ =
∫ Lhigh

Llow

((l − L̄l)/β̃)Il/β̃−1e−(l−L̄l)/β̃

Γ(Il/β̃)
dl (60)

• The size after increment is gamma-distributed, i.e.:

Xl,l′ =
∫ Lhigh

Llow

(l/β̃)(L̄l+Il)/β̃−1e−(l/β̃)

Γ((L̄l + Il)/β̃)
dl (61)

• The size-increment is normally-distributed, i.e.:

Xl,l′ =
∫ Lhigh

Llow

e−(l−L̄l−Il)2/(2β̃2)
√

2πβ̃
dl (62)

• There is individual variation in the growth parameters L∞ and k (equivalent to the parameters of a
linear growth increment equation given the assumption of von Bertlanffy growth), i.e.:



Xl,l′ =
∫ Lhigh

Llow

∫ Lhigh

Llow

∫ ∞
0

∫ ∞
0

1
Lhi,l − Llowl

e−(ln(L∞)−L̄∞)2/(2σ2
L∞ )

√
2πσ2

L∞

e−(ln(k)−k̄)2/(2σ2
k)

√
2πσ2

Lk

dLL∞dkdll′dll (63)

• There is individual variation in the growth parameter L∞:

Xl,l′ =
∫ Lhigh

Llow

∫ Lhigh

Llow

∫ ∞
0

1
Lhi,l − Llowl

e−(ln(L∞)−L̄∞)2/(2σ2
L∞ )

√
2πσ2

L∞

dLL∞dll′dll (64)

• There is individual variation in the growth parameters k:

Xl,l′ =
∫ Lhigh

Llow

∫ Lhigh

Llow

∫ ∞
0

1
Lhi,l − Llowl

e−(ln(k)−k̄)2/(2σ2
k)

√
2πσ2

k

dkdll′dll (65)

The size-transition matrix is specified by sex and can change in blocks.



Table 4: Observed growth increment data by sex

Female premolt
length (mm)

Female postmolt
length (mm)

Male premolt
length (mm)

Male postmolt length
(mm)

20.7 27 57.63 68.6
25.2 32 20.6 28.9
28.7 37.1 25.6 31.4
28.2 36.22 25.9 31.1
25.9 32.7 20 26.3
26.9 34.4 25.2 32.8
26.4 31.8 21 27.8
29 36.7 20.3 26.4
23 31.2 21.9 28.4
21.6 27.7 20.7 27.7
24.2 30.9 20.1 28
20.8 27.3 19.8 26.5
20.3 26.2 26 32.2
22.2 29.7 62.3 81.8
21.4 28 56.5 70
19.3 25.2 57 70
26.9 34.5 58.7 72.5
25.7 32.5 60.8 78.4
19.8 26.9 59.3 75.1
27.4 35.1 64 84.7
20.4 26.4 60.3 75.1
25.5 34.6 20.7 29.2
34.9 44.8 24 32.3
18.6 25.2 16.1 23
28.2 35.8 19.2 26.6
22.8 29.6 21.23 26.41
26.5 33.9 22.2 28.1
25.5 32.9 23.48 28.27
24.2 31.4 29.9 39.9
24.4 30.7 30.3 40.3
22.3 29.4 30.7 40.5
20.8 27.3 44.2 58.7
22.8 30.2 44.7 57.3
26.2 32.6 64.7 82.7
29.4 36.7 67.6 86
20.2 24.9 67.9 85.3
27.5 34.8 74.5 93.9
20.4 26.7 79.9 97.8
25.4 31.7 89.8 110
28.1 34.5 89.9 112.1
28.7 36 89.9 112.3
29.5 38.4 93.8 117.6
30.9 38.4 20 26.3
26 33.1
29.1 38.4
19.37 24.24
20.7 27.4
21.25 28.73
21.94 28.71
23.09 29.26



Female premolt
length (mm)

Female postmolt
length (mm)

Male premolt
length (mm)

Male postmolt length
(mm)

32.8 44.9
35.3 47.6
38.3 50.9
38.9 53
41 55.8
42.1 54.6
44.2 59.5
44.3 59.3
44.8 59.7
45.2 59.6
46.9 60.4
47 61.4
47.9 61.4
20.6 25.1
20.8 27.6
22 28.2
22.9 28.6



Table 5: Observed retained catches, discarded catch, and bycatch.
Discards and bycatch have assumed mortalities applied.

Survey year
Retained catch

(kt)
Discarded
females (kt)

Discarded males
(kt)

Trawl
bycatch (kt)

1982 11.85 0.02 1.33 0.37
1983 12.16 0.01 1.3 0.47
1984 29.94 0.01 2.89 0.5
1985 44.45 0.01 4.21 0.43
1986 46.22 0.02 4.45 0
1987 61.4 0.03 5.79 0
1988 67.79 0.04 6.1 0
1989 73.4 0.05 7.01 0.1
1990 149.1 0.05 15.95 0.71
1991 143 0.06 12.58 1.5
1992 104.7 0.12 17.06 2.28
1993 67.94 0.08 5.32 1.57
1994 34.13 0.06 4.03 2.67
1995 29.81 0.02 5.75 1.01
1996 54.22 0.07 7.44 0.66
1997 114.4 0.01 5.73 0.82
1998 88.09 0.01 4.67 0.54
1999 15.1 0 0.52 0.47
2000 11.46 0 0.62 0.41
2001 14.8 0 1.89 0.31
2002 12.84 0 1.47 0.17
2003 10.86 0 0.57 0.46
2004 11.29 0 0.51 0.63
2005 16.77 0 1.36 0.2
2006 16.49 0 1.78 0.42
2007 28.59 0.01 2.53 0.18
2008 26.56 0.01 2.06 0.18
2009 21.78 0.01 1.23 0.47
2010 24.61 0.01 0.62 0.14
2011 40.29 0.18 1.69 0.15
2012 30.05 0.03 2.32 0.22
2013 24.49 0.07 3.27 0.11
2014 30.82 0.17 3.52 0.13
2015 18.42 0.07 2.96 0.13
2016 9.67 0.02 1.31 0.06
2017 8.6 0.02 1.93 0.04
2018 12.51 0.02 2.86 0.23
2019 15.43 0.02 5.07 0.24



Table 6: Observed mature male and female biomass (1000 t) at the
time of the survey and coefficients of variation.

Survey
year

Female
mature
biomass

Female
CV

Mature
male

biomass Male CV

Males
>101mm

(kt)

Males
>101mm
(million)

1982 144.4 0.15 176.8 0.14 33.34 60.91
1983 90.13 0.2 161.6 0.13 38.09 70.09
1984 42.32 0.19 177.7 0.12 88.73 151.8
1985 6.12 0.2 71.84 0.11 43.39 72.84
1986 15.74 0.18 89.81 0.11 46.7 77.91
1987 122.6 0.16 194.6 0.11 74.44 128.6
1988 169.9 0.17 259.4 0.15 104.7 173.1
1989 264.2 0.25 299.2 0.11 92.31 158.9
1990 182.9 0.19 443.8 0.14 224.7 386.4
1991 214.9 0.19 466.6 0.15 292.2 452.9
1992 131.4 0.18 235.5 0.09 143.9 227.3
1993 132.1 0.16 183.9 0.1 78.11 126.7
1994 126.2 0.15 171.3 0.08 44.78 72.57
1995 168.7 0.14 220.5 0.13 37.75 65.18
1996 107.3 0.14 288.4 0.12 87.57 155.2
1997 103.8 0.2 326.8 0.1 168.7 280.6
1998 72.73 0.25 206.4 0.09 126.7 209.7
1999 30.89 0.21 95.85 0.09 52.53 85.2
2000 96.46 0.52 96.39 0.14 41.88 69.83
2001 77.24 0.28 136.5 0.12 41.51 70.69
2002 30.22 0.28 93.17 0.23 36.56 64.16
2003 41.71 0.31 79.07 0.12 32.57 55.61
2004 50.16 0.26 79.57 0.14 35.99 57.42
2005 64.85 0.17 123.5 0.11 40.67 63.26
2006 51.93 0.17 139.3 0.26 71.13 120.9
2007 55.89 0.22 153.1 0.15 73.62 127.5
2008 57.15 0.19 142 0.1 66.56 113.6
2009 52.16 0.21 148.2 0.13 78.92 129.9
2010 98.01 0.17 162.8 0.12 88.35 138.3
2011 175.8 0.18 167.1 0.11 94.67 147.6
2012 149.4 0.2 122.2 0.12 53.17 85.35
2013 131.4 0.17 97.46 0.12 42.93 71.79
2014 119.7 0.19 163.5 0.16 81.39 138.8
2015 85.13 0.17 80.04 0.12 35.77 56.11
2016 55.39 0.21 63.21 0.11 21.96 36.51
2017 106.8 0.21 83.96 0.13 20.52 35.02
2018 165.9 0.18 198.4 0.17 26.75 48.08
2019 110.4 0.2 169.1 0.17 28.12 51.27



Table 7: Changes in management quantities for each scenario con-
sidered. Reported management quantities are derived from maxi-
mum likelihood estimates. Reported natural mortality is for ma-
ture males and average recruitment is for males.

Model MMB B35 F35 FOFL OFL M avg_rec
20.1 144.11 120.46 1.59 1.59 95.25 0.30 109.70
20.2 133.51 121.47 1.23 1.23 88.90 0.29 103.91
20.2q 121.61 137.56 1.94 1.94 77.08 0.30 132.86
20.2m 43.29 17.85 6.29 6.29 70.88 0.17 152.61
20.2mq 92.20 28.06 12.46 1.86 14.72 0.75 241.96
20.3 140.88 118.13 1.26 1.26 95.37 0.30 104.45
20.1g 207.19 113.66 1.65 1.65 184.91 0.36 169.96



Table 8: Maximum likelihood estimates of predicted mature male
(MMB), mature female (FMB), and males >101mm biomass (1000
t) and numbers (in millions) at the time of the survey from the cho-
sen model. Columns 2-5 are subject to survey selectivity; columns
6-9 are the population values (i.e. the numbers at length are not
modified by multiplying them by a selectivity curve–they are esti-
mates of the underlying population).

Survey
year FMB MMB

Male
>101

biomass
Male >101
(millions) FMB MMB

Male
>101

biomass
Male >101
(millions)

1982 87.91 118.2 38.25 62 434.7 292.2 92.14 149.4
1983 74.55 116.9 40.31 62.83 364.2 288.8 97.1 151.4
1984 54.85 117.1 48.08 77.5 268.2 289 115.8 186.7
1985 41.28 112.9 48.5 78.99 201.9 279.9 116.8 190.3
1986 34.9 107.3 42.46 69.86 171.2 267.6 102.3 168.3
1987 115 115.5 41.65 70.27 572.8 289.4 100.3 169.3
1988 193 141.6 55.06 92.64 956.3 354.4 132.7 223.2
1989 411.4 362 141.7 237.4 904.1 417.4 162.6 272.4
1990 315 427.6 193 323.9 690.5 492.5 221.5 371.6
1991 232.4 385.3 177.1 295 509.5 443.6 203.3 338.6
1992 193.9 293.6 123.8 205.8 426.1 338.2 142.1 236.1
1993 196.2 210.5 73.82 123.2 432.5 242.9 84.71 141.4
1994 203 183.1 48.47 80.4 447.4 211.8 55.62 92.26
1995 214.2 210.1 53.54 91.62 472.5 242.8 61.44 105.1
1996 201.2 284.7 109.7 186.7 442.7 328.1 125.8 214.2
1997 157.4 327.7 164.3 273.3 345.3 377.1 188.5 313.6
1998 114 257 132.2 216.8 249.9 295.6 151.8 248.8
1999 87.56 154.9 67.7 110.5 192.2 178.4 77.7 126.8
2000 93.07 118 48.33 78.31 205.5 136.1 55.46 89.86
2001 99.21 95.24 32.37 53.26 218.7 109.8 37.15 61.12
2002 84 90.71 31.2 53.33 184.5 104.5 35.81 61.2
2003 62.54 100.1 45.57 75.87 137.1 115.3 52.3 87.07
2004 45.3 99.28 46.93 76.48 99.32 114.5 53.86 87.77
2005 89.18 97.93 39.51 64.73 198.4 113.1 45.35 74.29
2006 126.8 111.8 39.98 67.52 280.2 129.2 45.88 77.48
2007 109.7 146.8 60.95 102.4 240.9 169.2 69.95 117.5
2008 80.5 169.7 78.06 130.2 176.5 195.4 89.58 149.4
2009 61.19 182.1 94.81 156.7 134.3 209.5 108.8 179.8
2010 158.6 174.2 98.11 159.9 353.5 200.4 112.6 183.6
2011 247 144.5 78.12 126.4 546.6 166.4 89.65 145.1
2012 229.2 102.5 42.39 70.3 503.9 118.1 48.65 80.68
2013 189.2 89.51 34.35 58.49 415.7 103.1 39.42 67.12
2014 151.5 82.62 35.74 59.73 332.8 95.15 41.02 68.54
2015 113 58.02 21.27 35.36 247.9 66.89 24.41 40.58
2016 91.55 44.35 12.44 20.85 201.2 51.27 14.27 23.93
2017 124.2 61.64 12.1 20.41 275 72.01 13.89 23.42
2018 184.8 127.4 15.49 26.46 409.3 148.7 17.78 30.36
2019 196.5 251.7 44.65 79.02 433 291.4 51.23 90.68
2020 160.8 486.1 204.3 352 352.9 559.7 234.5 403.9



Table 9: Maximum likelihood estimates of predicted total numbers
(billions), not subject to survey selectivity at the time of the survey.
These are maximum likelihood estimates.

Survey year
Total

numbers
1982 5.061
1983 5.454
1984 6.099
1985 7.955
1986 16.21
1987 15.72
1988 15.5
1989 11.58
1990 9.641
1991 8.436
1992 13.55
1993 12.16
1994 10.78
1995 8.15
1996 6.108
1997 4.672
1998 4.455
1999 4.232
2000 3.513
2001 2.954
2002 2.985
2003 4.184
2004 5.966
2005 5.946
2006 5.45
2007 4.266
2008 3.566
2009 6.267
2010 5.618
2011 4.616
2012 3.886
2013 3.532
2014 3.006
2015 3.743
2016 11.75
2017 12.72
2018 9.729
2019 7.375
2020 6.487



Table 10: Maximum likelihood estimates of predicted mature male
biomass at mating, male recruitment (millions) from the chosen
model, and estimated fully-selected total fishing mortaltiy.

Survey year
Mature male

biomass Male recruits
Fishing
mortality

1982 218.9 4.4 0.19
1983 212.2 1.75 0.19
1984 193.9 3.82 0.45
1985 171.2 6.49 0.72
1986 161.9 0.95 0.86
1987 170.5 3.08 1.13
1988 210.7 0.3 0.97
1989 253.4 0.64 0.83
1990 235.7 2.47 1.64
1991 203.8 5.12 1.79
1992 147.7 2.5 2.44
1993 127.9 0.39 1.82
1994 127.8 0.1 1.39
1995 155.3 0.14 1.02
1996 198.8 0.15 0.85
1997 193.5 1.76 1.14
1998 144.6 0.22 1.24
1999 124.5 0.36 0.29
2000 93.13 0.3 0.35
2001 67.75 1.63 0.87
2002 68.09 1.45 0.64
2003 79.21 1.8 0.32
2004 77.46 1.54 0.34
2005 70.01 0.4 0.72
2006 83.24 0.17 0.66
2007 102.8 0.63 0.77
2008 125.3 1.37 0.51
2009 141.5 0.23 0.32
2010 134.8 0.4 0.31
2011 89.63 0.15 0.87
2012 61.98 0.45 1.36
2013 54.34 0.35 1.52
2014 41.65 2.07 2.33
2015 31.32 15.73 2.64
2016 29.79 0.78 1.75
2017 48.04 0.18 1.79
2018 101.1 0.14 1.69
2019 207.2 0.18 0.54



Table 11: Maximum likelihood estimates of predicted total num-
bers (billions), not subject to survey selectivity at the time of the
survey.

Survey year
Total
females

Total
males

Total
numbers

1982 6.053 3.591 9.643
1983 4.885 6.881 11.77
1984 3.73 6.52 10.25
1985 4.485 8.305 12.79
1986 38.71 12.19 50.89
1987 34.08 9.346 43.42
1988 24.35 9.477 33.83
1989 17.74 6.774 24.52
1990 13.27 5.223 18.49
1991 13.87 5.839 19.71
1992 15.62 8.929 24.55
1993 15.08 8.492 23.57
1994 17.29 6.18 23.47
1995 12.55 4.332 16.89
1996 8.911 3.087 12
1997 6.368 2.192 8.561
1998 5.673 3.118 8.791
1999 8.511 2.256 10.77
2000 6.872 1.908 8.78
2001 4.933 1.604 6.537
2002 3.521 2.718 6.24
2003 2.577 3.321 5.898
2004 12.4 4.087 16.48
2005 8.906 4.366 13.27
2006 6.322 3.402 9.724
2007 4.522 2.509 7.031
2008 3.878 2.327 6.204
2009 23.54 2.949 26.49
2010 18.55 2.245 20.8
2011 14.16 1.933 16.09
2012 12.46 1.435 13.89
2013 8.896 1.397 10.29
2014 6.416 1.274 7.69
2015 6.442 2.895 9.337
2016 13.5 17.7 31.2
2017 17.12 13.06 30.18
2018 12.91 9.232 22.14
2019 9.39 6.527 15.92
2020 6.892 4.681 11.57



Table 12: Differences between GMACS and the status quo model.

Process GMACS Status quo
Recruitment Yearly recruitment estimate +

parameter to divide recruitment
between sexes

Separate estimated recruitment
deviations and average recruitment

for both sexes
Fishing mortality Total mortality and female discards

treated consistently (see May CPT
document)

Total mortality and female discards
treated inconsistently (see May CPT

document)
Growth Linear growth for both males and

females
Linear growth for males; kinked

growth for females
BSFRF Freely estimated availability curves

for all sex/year combinations
Logistic availability curves for some

sex/year combinations
Natural mortality Estimated M for mature males,

mature females, immature males,
immature females (n=4)

Estimated M for mature males,
mature females, immature males and

females (n=3)



Figure 1: Raw total numbers at width of male crab observed in the survey. Highlighted years represent the
development of the 2015 pseudocohort. Greyed years are all other years for comparison. Red line is 2019.



Figure 2: Raw total numbers at width of male crab observed in the survey.
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Figure 3: Model fits to the observed mature biomass at survey
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Figure 4: Model fits to the observed mature biomass at survey 2009-present
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Figure 6: Comparison of estimated survey MMB from GMACS and the status quo model when the status
quo model is forced to fit the last two years of survey data.



Figure 7: Retrospective patterns in mature male biomass for models 20.1, 20.2, 20.2q, 20.2m, and 20.2qm.
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Figure 10: Model fits to retained catch size composition data
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Figure 11: Model fits to total catch size composition data
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Figure 12: Model fits to trawl catch size composition data



0.0

0.1

0.2

0.3

0.4

LengthBins[[1]]LengthBins[[1]]

Industry 2009

LengthBins[[1]]LengthBins[[1]]

NMFS 2009 20.1
20.2
20.2q
20.2m
20.2mq
20.3
20.1g

40 60 80 100 120

0.0

0.1

0.2

0.3

0.4

LengthBins[[1]]LengthBins[[1]]

Industry 2010

40 60 80 100 120

LengthBins[[1]]LengthBins[[1]]

NMFS 2010

Carapace width (mm)

P
ro

po
rt

io
n

Males
Females

Figure 13: Model fits to size composition data from summer survey experiments (2009 & 2010)
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Figure 14: Model fits to immature male survey size composition data. Note that male and female survey
selectivity proportions at length in a given year sum to 1. Consequently, the integral of predicted length
compositions may appear to be different than the integral of the observed length composition data.
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Figure 15: Model fits to immature female survey size composition data. Note that male and female survey
selectivity proportions at length in a given year sum to 1. Consequently, the integral of predicted length
compositions may appear to be different than the integral of the observed length composition data.
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Figure 16: Model fits to mature male survey size composition data. Note that male and female survey
selectivity proportions at length in a given year sum to 1. Consequently, the integral of predicted length
compositions may appear to be different than the integral of the observed length composition data.
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Figure 17: Model fits to mature female survey size composition data. Note that male and female survey
selectivity proportions at length in a given year sum to 1. Consequently, the integral of predicted length
compositions may appear to be different than the integral of the observed length composition data.
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Figure 18: Model predicted mature biomass at mating time. Dotted horizontal lines are target biomasses.
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Figure 19: Estimated survey selectivity
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Figure 20: Estimated time-varying survey catchability (era 3).
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Figure 21: Estimated experimental survey selectivity (availability * survey selectivity)
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Figure 22: Estimated probability of maturing
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Figure 23: Model predicted fishing mortalities and selectivities for all sources of mortality
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Figure 24: Estimated recruitment and proportions recruiting to length bin.
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Figure 27: Output of random effects model for three different measures of large male biomass (>78mm,
>95mm, and >101mm carapace width).



Figure 28: Location of BSFRF survey selectivity experiments.



Figure 29: Number of crab from which estimates of biomass and length composition data were inferred
within the survey selectivity experimental area.
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Figure 30: Raw female numbers from BSFRF survey selectivity experiments (2009 & 2010). Note a change
in scale on the y-axis from 2009 to 2010
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Figure 31: Raw male numbers from BSFRF survey selectivity experiments (2009 & 2010). Note a change in
scale from 2009 to 2010 on the y-axis.



Figure 32: Observed numbers at length extrapolated from length composition data and estimates of total
numbers within the survey selectivity experimental areas by year (left). Inferred selectivity (i.e. the ratio of
crab at length in the NMFS gear to crab at length in the BSFRF gear.



Figure 33: Inferred selectivity for all available years of BSFRF data.

Figure 34: Radiometric estimates of shell age in male snow and tanner crabs collected during the NMFS
survey of 1992. Reproduced from Ernst et al. 2005’s presentation of Nevissi et al. 1995.



Figure 35: Observed numbers at length of old shell mature males by size class. The presented size bins are
not vulnerable to the fishery, so all mortality is ’natural’. The decline in numbers in a size class after the
recruitment collapse in the early 1990s demonstrates expected natural mortality for mature male individuals.



Figure 36: Input distribution of maximum age and resulting distribution of natural mortality calculating
using Then et al. 2016’s methodology.
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Figure 37: Comparison of estimated and empirically derived proportion maturing by size class. Blue lines
are derived from observation of proportions of mature new shell males at a given size in a given year. Red
dashed lines represent other hypotheses for the contribution to reproduction of different sized crab.



Figure 38: A comparison of size transition matrices from the assessment (left) and based on the empirical
estimates. Units on each axis are width of carapace in mm.



Figure 39: Methodology for calculating ’empirical’ selectivity from total male survey size composition data,
total fishery selectivity size composition data, and retained fishery selectivity size composition data. Units
for top two panels are densities; units for third down panel are not defined because of the scaling.



Figure 40: Comparison of estimated and empirically derived total fishery selectivity. Blue lines are yearly
empirically derived selectivities. Red line is the 2020 status quo model’s estimate of selectivity. Size is width
of carapace in mm.



Figure 41: Comparison of estimated and empirically derived retained fishery selectivity. Blue lines are yearly
empirically derived selectivities. Red line is the 2020 status quo model’s estimate of selectivity. Size is width
of carapace in mm.



Figure 42: Distributions of exploitation rates associated with F35 for a range of assumptions about fishery
selectivity and reproductive contribution of different sizes of crab. Vertical dashed red line indicates the
exploitation rate associated with the F35 estimated in the assessment. The All panel uses all years of
empirical fishery selectivity to calculate F35. The Rationalization panel uses only post rationalization years.
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