Overview of the 2013 BSAI Groundfish SAFE Report

BSAI Groundfish Plan Team

- Mike Sigler, co-chair
- Grant Thompson, co-chair
- Jane DiCosimo, coordinator

NOAA
 FISHERIES
 SERIVICE

Ecosystem and Economic Information

Eastern Bering Sea Climate - FOCI (Overland et al.)

EBS Euphausiids (Ressler et al.)

- Acoustically-determined
- Euphausiid abundance is better predicted by water temperature during summer than pollock abundance (Ressler et al., in prep)

First-Wholesale Market Value

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 7

BSAI At-Sea Wholesale Market: Aggregate Economic Indices

Aggregate Indices

Stock Assessments

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 9

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency

Bottom trawl survey areas

"Abbreviated" full assessments

- Key prey species of Steller sea lions:
- Walleye pollock (EBS, AI, Bogoslof)
- Pacific cod (EBS, AI)
- Atka mackerel (BSAI)
- Stocks with possible conservation concerns:
- Greenland turbot
- Because authors willing to go above and beyond:
- Yellowfin sole
- Other flatfish

Recommended 2014 ABC

Percent change in ABC (2014 vs. 2013)

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 16

Eastern Bering Sea

pollock stock
assessment

James Ianelli
Steve Barbeaux
Stan Kotwicki
Taina Honkalehto
Neal Williamson
Kerim Aydin

Alaska Fisheries Science Center
NMFS/NOAA
December 2013

Winter 2013 fishery

Eastern Bering Sea (EBS)

Winter 2012 fishery

Eastern Bering Sea (EBS)

Pollock size

 composition in the 20122013 fisheryFishing: A-season

Is it salmon

 avoidance?

Figure 1: Chinook Salmon Conservation Area

EBS pollock fishery

mean weight at age

Anomalies relative to mean

| | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1991 | 0.797542 | 0.932106 | 0.933721 | 0.941156 | 0.953671 | 0.870433 | 0.876361 | 0.898722 | 0.834146 | 0.860472 |
| 1992 | 1.105505 | 0.912331 | 0.991514 | 0.922184 | 0.915766 | 0.964972 | 0.895247 | 0.976858 | 0.915082 | 0.883095 |
| 1993 | 1.374046 | 1.193818 | 1.00836 | 0.999809 | 1.045609 | 1.023965 | 1.041983 | 0.980982 | 1.043142 | 1.076522 |
| 1994 | 1.095898 | 1.263646 | 1.121412 | 0.965873 | 0.793419 | 0.99103 | 1.212693 | 1.052911 | 0.992777 | 0.985515 |
| 1995 | 1.04296 | 0.976888 | 1.120793 | 1.091922 | 0.962404 | 0.954656 | 1.066566 | 1.067232 | 1.047748 | 1.040824 |
| 1996 | 0.895106 | 0.833957 | 1.044129 | 1.022614 | 1.063769 | 0.931379 | 0.889611 | 0.869562 | 1.040724 | 1.041158 |
| 1997 | 0.898728 | 0.908523 | 0.850569 | 0.960428 | 0.998874 | 1.051421 | 0.947826 | 0.988864 | 1.046079 | 1.024669 |
| 1998 | 1.032123 | 1.144645 | 0.96296 | 0.806707 | 0.875619 | 1.01511 | 1.025485 | 0.991481 | 0.959544 | 0.985202 |
| 1999 | 1.111867 | 0.978252 | 0.98004 | 0.907591 | 0.817061 | 0.884644 | 0.905395 | 1.01504 | 0.895376 | 0.984319 |
| 2000 | 0.976192 | 1.020381 | 0.967506 | 0.947178 | 0.879658 | 0.790101 | 0.846302 | 0.812305 | 0.940416 | 0.916032 |
| 2001 | 0.898806 | 0.967521 | 1.028028 | 1.018798 | 1.08254 | 0.976829 | 0.92496 | 0.907154 | 0.984248 | 1.009376 |
| 2002 | 1.056893 | 0.98992 | 1.028347 | 1.029794 | 1.021233 | 1.005176 | 0.972635 | 0.874238 | 0.964216 | 0.994542 |
| 2003 | 1.345367 | 1.072039 | 0.998305 | 0.993598 | 0.969221 | 0.936827 | 0.945265 | 0.976874 | 0.8999 | 0.852975 |
| 2004 | 1.121469 | 1.130618 | 0.982951 | 0.996635 | 1.00118 | 0.911454 | 0.893618 | 0.962689 | 0.859458 | 0.819607 |
| 2005 | 0.979762 | 0.987411 | 0.981346 | 0.956439 | 0.989188 | 0.931083 | 0.925857 | 0.872841 | 0.939838 | 0.912249 |
| 2006 | 0.846866 | 0.872728 | 0.927572 | 0.975833 | 0.960827 | 0.940298 | 0.919437 | 0.898538 | 0.903786 | 0.892331 |
| 2007 | 0.939784 | 0.992351 | 0.98599 | 1.011852 | 1.079138 | 1.083285 | 1.041705 | 1.018215 | 0.985212 | 1.054427 |
| 2008 | 0.913728 | 1.014666 | 1.001448 | 0.999673 | 1.011271 | 1.022688 | 0.970327 | 0.960646 | 0.970861 | 0.976696 |
| 2009 | 0.958512 | 1.06758 | 1.054886 | 1.154744 | 1.14678 | 1.131612 | 1.225777 | 1.185544 | 1.212979 | 1.138758 |
| 2010 | 1.051678 | 0.952489 | 1.022153 | 1.18526 | 1.244698 | 1.232029 | 1.169203 | 1.27246 | 1.196637 | 1.282749 |
| 2011 | 0.805081 | 0.989787 | 1.02262 | 1.044642 | 1.093709 | 1.199252 | 1.164999 | 1.202153 | 1.170464 | 1.122574 |
| 2012 | 0.752085 | 0.798345 | 0.985351 | 1.06727 | 1.094363 | 1.151755 | 1.138749 | 1.21469 | 1.197367 | 1.145906 |

Fishery catch rate (EBS pollock)

Fishery

Age

2013 Bottom-trawl survey

Pollock biomass estimate: 4,575 kt

2012 Bottom-trawl survey

Pollock biomass estimate: 3,487 kt

2011 Bottom-trawl survey

Pollock biomass estimate: 3,112 kt

Eastern Bering Sea

Eastern Bering Sea

In 2013,
5-year olds
highest survey
abundance
on record since 1987

Acoustic

Vessels of

Oportunity

Mid-water acoustic survey

Opportunistic index updated for 2012 and 2013

Bottom trawl

 SurveyEfficiency

Bottom trawl

Survey
Efficiency

- Evaluation and formulation conducted by Stan Kotwicki
- Provides revised indices
- With covariance matrices
- Allows for an alternative approach to assessment model fitting

Survey bottom-trawl efficiency

Survey bottom-trawl efficiency

EBS pollock

Assessment
Results

EbS pollock
Assessment
Results

Bering Sea

pollock

fishery

age data and
fits

EBS pollock fishery age composition data

EBS pollock
Assessment
Results

Bering Sea

pollock

survey

age data and
fits

EBS pollock
Assessment
EBS pollock

recruitment estimates

EBS pollock Assessment

Results

EBS pollock
Assessment
Retrospective
Results

EBS pollock

Assessment

Results
Catch (millions of t)

EBS pollock

Assessment
Results

Fishery snail-trail...

$B / B_{m s y}$

EBS pollock summary

- Outlook
- Fishing mortality reduced
- Survey age composition narrow, but high in 2013
- Spawning biomass projected to decline if catch more than about 1.1 million t
- Roe production poor
- May be sign of lower reproductive output?

EBS walleye pollock, continued

- Beginning with the 2010 assessment, the Team and SSC have based ABC recommendations on the most recent 5 -year average fishing mortality rate.
- This year, the authors' base their 2014 and 2015 ABC recommendations on the same strategy, giving values of 1.369 million t and 1.258 million t, respectively.
- The Team concurs with these recommendations, noting that this assessment is very much in line with projections made last year and noting also that the October government shutdown limited opportunities for analysis of alternative harvest strategies.

EBS walleye pollock, concluded

Area	Year	Biomass	OFL	ABC	TAC	Catch
	2012	$8,340,000$	$2,470,000$	$1,220,000$	$1,200,000$	$1,205,258$
Eastern Bering Sea	2013	$8,140,000$	$2,550,000$	$1,375,000$	$1,247,000$	$1,267,963$
	2014	$8,045,000$	$2,795,000$	$1,369,000$	n / a	n / a
	2015	$7,778,000$	$2,693,000$	$1,258,000$	n / a	n / a

Al walleye pollock

Biomass (t)

Recruitment

AI walleye pollock, concluded

Area	Year	Biomass	OFL	ABC	TAC	Catch
	2012	251,000	39,600	32,500	19,000	975
	2013	266,000	45,600	37,300	19,000	2,964
Aleutian	$20,59,525$	42,811	35,048	n / a	n / a	
Islands	2014	259,307	47,713	39,412	n / a	n / a
	2015	289,3				

Pacific cod

-There is a major change in the Pacific cod assessment this year. Previously an analytical assessment was done for cod in the eastern Bering Sea (EBS), and the abundance estimate from that assessment was extrapolated to the Aleutian Islands (AI) region on the basis of survey estimates of relative abundance.
-This year, in anticipation of separate regional specifications of OFL and ABC by the SSC, separate assessments were done for the EBS and AI regions. The assessment author and the Team recommend a Tier 3 assessment for the EBS and a Tier 5 assessment for the Aleutians.

EBS Pacific cod

Biomass (t)

Recruitment

EBS Pacific cod, continued

- Model changes/alternatives:
- This year's assessment is a rerun of last year's accepted model (Model 1, the same as the 2011 accepted model) with updated data files.
- The 2006, 2008, and 2010 year classes appear to be strong, and spawning abundance is expected to increase in the near term.
- The Team also repeated its previous recommendation that studies of the vertical distribution of Pacific cod continue in order to test the previous finding that the average product of survey catchability and selectivity across the $60-81 \mathrm{~cm}$ size range is 0.47 (based on vertical distribution from archival tags).

EBS Pacific cod, concluded

Area	Year	Age 3+ biomass	OFL	ABC	TAC*	Catch
BS/AI	2012	$1,620,000$	369,000	314,000	275,000	245,823
	2013	$1,510,000$	359,000	307,000	260,000	221,396
EBS	2014	$1,550,000$	299,000	255,000	n / a	n / a
	2015	$1,600,000$	319,000	272,000	n / a	n / a

AI Pacific cod

Survey biomass (t)

Catch

Al Pacific cod, continued

- Model changes/alternatives:
- The Team concluded that neither of the age-structured models performed credibly. For the time being, the author and the Team recommend a Tier 5 approach, specifically the random effects model.
- Assuming a natural mortality rate of 0.34 (as in the EBS assessment), this results in 2014 and 2015 maximum permissible ABCs of $15,100 \mathrm{t}$, which are the Team's recommended ABC values.
- Work on a Tier 3 assessment is anticipated to continue.

Al Pacific cod, concluded

Area	Year	Age 3+ biomass	OFL	ABC	TAC*	Catch
BS/AI	2012	$1,620,000$	369,000	314,000	275,000	245,823
	2013	$1,510,000$	359,000	307,000	260,000	221,396
AI	2014	$59,000^{* *}$	20,100	15,100	n / a	n / a
	2015	$59,000^{* *}$	20,100	15,100	n / a	n / a

**Biomass shown for Al cod is survey biomass (Tier 5) not Age 3+ biomass.

Yellowfin sole

Biomass (thousands mt)

Recruitment

Yellowfin sole, concluded

Area	Year	Age 6+ Biomass	OFL	ABC	TAC	Catch
BSAI	2012	$1,950,000$	222,000	203,000	202,000	147,186
	2013	$1,960,000$	220,000	206,000	198,000	156,302
	2014	$2,113,000$	259,700	239,800	n / a	n / a
	2015	$2,188,000$	268,900	248,300	n / a	n / a

Greenland turbot

Biomass (t)

Recruitment

Greenland turbot, concluded

Area	Year	Age 1+ Biomass	OFL	ABC	TAC	Catch
BSAI	2012	76,900	11,700	9,660	8,660	4,720
	2013	81,000	2,540	2,060	2,060	1,747
	2014	84,546	2,647	2,124	n/a	n/a
	2015	96,298	3,864	3,173	n/a	n/a

Arrowtooth flounder

Biomass (t)

Recruitment

Arrowtooth flounder, continued

- Effect of new maturity curve on spawning biomass

Arrowtooth flounder, concluded

Area	Year	Age 1+ Bio	OFL	ABC	TAC	Catch
BSAI	2012	$1,130,000$	181,000	150,000	25,000	22,714
	2013	$1,130,000$	186,000	152,000	25,000	20,158
	2014	$1,023,440$	125,642	106,599	n / a	n / a
	2015	995,494	125,025	106,089	n / a	n / a

Kamchatka flounder

Biomass (t)

Kamchatka flounder, continued

- Model changes/alternatives:
- In 2011 and 2012, this stock was managed under Tier 5. An agestructured model was presented to the Team and SSC in September and October of 2012. The SSC did not accept the model, and recommended a large number of further evaluations. For 2013, the stock continued to be managed under Tier 5.
- The authors responded to the SSC's October 2013 recommendations in a preliminary assessment presented to the Team and SSC in September and October of this year. For this year's final assessment, the projection model was run, based on parameters and numbers at age from the age-structured model presented in the preliminary assessment.

Kamchatka flounder, concluded

Area	Year	Age 1+ Bio	OFL	ABC	TAC	Catch
BSAI	2012	125,000	24,800	18,600	17,700	9,668
	2013	125,000	16,300	12,200	10,000	7,794
	2014	136,600	8,270	7,100	n / a	n / a
	2015	138,700	8,500	7,300	n / a	n / a

Blackspotted and rougheye rockfish

Biomass (thousands t)

Recruitment

Percentage of survey tows in which blackspotted/rougheye rockfish were not caught

(i.e., the "skunk" index)

Changes in mean size by subarea

ANOVA models indicate a significant year effect in all areas except the SBS. However, the differences in mean size between years is much larger in the western Al than in other areas.

Blackspotted and rougheye rockfish, continued

- The Team found the quantity and quality of the information presented to be compelling and ... concurred with the authors' conclusions that the blackspotted/rougheye rockfish abundance has been reduced in the WAI.
- The Team has more concern over local overexploitation of this assemblage than other stocks that have been subjected to the stock structure template.
- If the SSC concurs with this level of concern, the Team anticipates a management response in 2014. The Team recommended that the authors update the 7 metrics [of stock status] in time for the September 2014 meeting. At that meeting, the Team will review the WAI stock status again and evaluate the effect of any management response in 2014.

Blackspotted and rougheye rockfish, concluded

Area/sub area	Year	Total Bio 1.	OFL	ABC	TAC	Catch
BSAI	2012	24,900	576	475	475	201
	2013	29,800	462	378	378	341
	2014	30,400	505	416	n / a	n / a
	2015	31,400	580	478	n / a	n / a

${ }^{1}$ Total biomass from AI age-structured projection model and survey biomass estimates from EBS.

Atka mackerel

Biomass (thousands t)

Recruitment

Atka mackerel, concluded

	Year	Age 3+ Biomass	OFL	ABC	TAC	Catch
BSAI	2012	405,000	96,500	81,400	50,763	47,831
	2013	289,000	57,700	50,000	25,920	23,180
	2014	384,364	74,492	64,131	n / a	n / a
	2015	387,308	74,898	64,477	n / a	n / a

