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Executive Summary 

Fishery age composition residuals have suggested misfit for this model for several decades, and has been 

a point of concern for the PT and SSC. More flexible configurations for fishery selectivity need to be 

explored.  Facilitation of a new suite of more flexible non-parametric and semi-parametric selectivities in 

a more rigorous statistical framework requires moving away from ADMB and toward its replacement 

TMB. We thus ported model 19.1a (the 2022 final model) to TMB and demonstrate nearly identical 

estimates. We call the TMB version of 19.1a model 23.0 to reflect the change in software framework. We 

then used model 23.0 to explore a suite of fisheries selectivities which vary in their flexibility and where 

that flexibility is permitted. We conclude that two non-parametric models would make for an improved 

fisheries selectivity formulation based on analyzing OSA residuals, AIC model selection, and 

performance in projected selectivity. The models are 23.0a which uses a 2D AR(1) model, and 23.0b 

which uses a so-called 3D AR(1) process that parses age, year, and cohort correlations from the data. 

These models are not expected to greatly impact management advice, but we believe their improved 

performance and projection capabilities make for a better stock assessment moving forward. 

The authors recommend moving to 23.0 this year, and leave it up to PT discretion whether to adopt 

23.0a or 23.0b this year.  

Proposed models 

Model 23.0: Bridging from ADMB to Template Model Builder 

Template Model Builder (TMB; Kristensen et al. 2016) is a software platform designed to estimate 

complex, non-linear hierarchical models. Its primary feature is the ability to efficiently apply the Laplace 

approximation to the marginal likelihood, so that process errors can be estimated using standard 

numerical optimization (Skaug and Fournier 2006). It is widely seen as the successor to ADMB, which 

has limited Laplace approximation capabilities and thus a penalized maximum likelihood approach is 

generally taken (i.e., process errors fixed and random effects estimated as fixed effects). Despite this 

important advantage, there have been relatively few implementations for stock assessments in the North 

Pacific. TMB is used more widely in other areas, such as WHAM (Stock and Miller 2021) on the US East 

Coast, and SAM (Nielsen and Berg 2014) in Europe. A WHAM version of the GOA pollock assessment 

was presented to the Plan Team in 2022, but there are advantages to using a bespoke model like the 

ADMB version developed by Martin Dorn and used for decades. Here we present a direct port of the 

2022 accepted ADMB model 19.1a to TMB. Due to a change in software we name this model 23.0, 

although our initial goal is to match model 19.1a as close as possible.  

We therefore converted the bespoke ADMB model to TMB. There are a few important differences 

between ADMB and TMB in terms of syntax and functionality relevant to stock assessments. TMB has 

no native phased estimation capabilities (although there is an R function that serves a similar purpose) so 

all parameters are estimated simultaneously starting from their initial values. We used the 19.1a MLE 

estimates as initial values in model 23 and were able to obtain the same model predictions, and when 
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optimized from there the same standard errors (uncertainties) for parameters and derived quantities (Fig. 

1). TMB does not have an equivalent to ADMB’s “dev_vector” parameter class which penalizes a vector 

to have a mean of zero. Model 19.1a uses this feature by estimating a single mean in addition to the 

vector. When converting to a standard unpenalized vector, a degree of freedom is lost. The means are thus 

fixed at arbitrary values and mathematically the two become equivalent.  

 

Figure 1. Results of bridging the ADMB 19.1a model to TMB model 23.0. Shown are estimates and standard errors (SE) for two 

key outputs, annual recruitment (in billions) and spawning stock biomass (SSB; in M t). The differences, calculated as (TMB-

ADMB)/ADMB are very small, typically less than 0.02%, and presumably due to differences in the optimizer and precision of 

data inputs. 

 

Non-parametric and semi-parametric fisheries selectivity 

This stock has had persistent residual patterns in the fishery age composition data for many years, 

particularly for age 4 and 5 (Fig. 2). This has been a concern of the PT for many years. For instance 

The GOA Plan Team in its November 2019 minutes recommended the author examine fishery selectivity, 

as persistent patterns in the catch-at-age residuals may represent artifacts of the selectivity functional 

form used. 
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Figure 2. OSA residuals (leaving out age 1) for the 2022 accepted model. Persistent patterns in age 4,5 and 9 fish have been a 

point of concern. 

 

In 2022 several ad hoc approaches were explored which demonstrated that a more flexible fisheries 

selectivity form could reduce the residual patterns. However, these approaches were difficult to justify 

and relied on arbitrarily setting likelihood penalties of time-varying selectivity curves. Instead it would be 

ideal to explore more flexible selectivity options based on published literature, and estimate the amount of 

flexibility from the data. We therefore use model 23.0 to explore alternative selectivity parameterizations. 

First, we review three important classes of hierarchical modeling approaches that can be used for 

selectivity: parametric, non-parametric, and semi-parametric functions. 

Parametric models 

Parametric selectivity curves are mathematical functions that have typically 2-4 parameters that define a 

specific form or shape (often asymptotic or dome shaped). Some common functions selected for 

parametric selectivity are: double normal, logistic, and double logistic. The pollock model has used 

double logistic historically. They are usually selected based on hypothesized interactions between 

fishing/survey gear and the stock. That interaction accounts for “availability (i.e., the probability that a 

fish of a specific age or size is in the same vicinity at the same time as gear deployment) and contact (or 

gear) selectivity (i.e., the relative probability that a fish of specific age or size is caught given it is 

available to the gear” (Privitera-Johnson et al. 2022). 

A common way to incorporate time variation in parametric models is to let the parameters vary over time, 

penalized as a random walk or AR(1) process. This is the current situation for model 19.1a, and historical 

models, where the ascending inflection point and slope parameters are time-varying. Arbitrary penalties 

are used in a penalized maximum likelihood context. With TMB, the variances are now estimable.  
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Non-parametric models 

Non-parametric selectivity functions are functions that estimate parameters for each age or age by year to 

flexibly estimate the shape based on available data. Non-parametric models penalize large fluctuations 

between ages and/or years because it is unlikely that the availability or contact selectivity has large shifts 

between ages and/or years. For example, the Woods Hole Assessment Model (WHAM) can estimate age-

specific parameters with additional yearly variation penalized by a year and age 2D-AR1 function (Stock 

and Miller 2021). Similarly, the stock assessment model (SAM) can estimate year and age specific 

selectivity that follows a random walk with multivariate normal increments that can include multiple 

correlation parameterizations (Nielsen and Berg 2014).  

Recently Cheng et al. (2023) introduced a computationally efficient form of the 2D AR(1) process that 

parses variation by age, year and cohort. They provide a “marginal variance” and “conditional variance” 

version of this approach, which differ in how the covariance matrix is calculated. A priori the marginal 

variance option seems a better fit, but both are explored. The main potential advantage of this “3D” 

approach over the 2D one is that if there is cohort targeting by the fishery then this signal could be 

detected and propagated into projected selectivity, thus improving near-term estimates of SPR and 

management reference points. 

In our non-parametric models, we estimate a mean selectivity at each age (ages 1-10), with deviations 

around those means allowing for flexibility. These deviations can be configured to correlate by age, year, 

or age and year (2D), or age, year and cohort (3D). The variances and correlations associated with these 

AR(1) models are estimable by TMB simultaneously with the rest of the assessment, hence uncertainty is 

appropriately propagated through the model. 

Semi-parametric models 

Semi-parametric selectivity functions are an intermediate between non-parametric and parametric models. 

The key difference is that a constant parametric form is estimated, and then the predicted selectivity at 

each age is scaled based on an exponentiated random effect deviation. Xu et al. (2019) develop a semi-

parametric curve that combines the parametric logistic function with 2D-AR1 age and year specific 

nonparametric deviations. We extend this approach for the double logistic used for pollock. The 

configuration and estimation of the non-parametric component is the same. 

 

Model set explored  

Since model 23 is in TMB it is now possible to explore a large suite of new flexible selectivity forms. We 

wanted to explore how internally estimating time-varying fisheries selectivity would behave and compare 

to model 19.1a generally, so we selected a fairly large set of models (Table 1).  
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Table 1. Fisheries selectivity models considered and fit. 

Name Type Fixed (k) and random (p) effects associated with fisheries 

selectivity 

Constant Parametric double logistic Initial and final inflection ages and slopes (k=4), no random 

effects (p=0). Used as a baseline without any time-variation. 

ParDevs Parametric double logistic with random 

walk on initial slope and inflection point 

Initial and final inflection ages and slopes, plus one process 

error (k=5), two annual vectors of RE (p=116). This is the 

same as 19.1a except the process error is estimated 

Log-AR1-Age Semiparametric double logistic with 

random effects by age 

Initial and final inflection ages and slopes, plus process error 

and AR1 correlation (k=6), one annual vectors of RE (p=10) 

Log-AR1-Year Semiparametric double logistic with 

random effects by year 

Initial and final inflection ages and slopes, plus process error 

and AR1 correlation (k=6), one annual vector of RE (p=58) 

Log-2D-AR1 Semiparametric double logistic with 

random effects by age and year 

Initial and final inflection ages and slopes, plus process error 

and two AR1 correlations (k=7), matrix of RE (p=580) 

Age-specific Nonparametric age-specific fixed effects 

for selectivity at age. No time-variation 

Mean selectivity at age, (k=10) and no random effects (p=0) 

AR1-Year Nonparametric with random effects by 

year 

Mean selectivity at age, process error and correlation (k=12) 

and annual random effects (p=58) 

2D-AR1 Nonparametric with random effects by age 

and year 

Mean selectivity at age, process error and two correlations 

(k=13) and matrix of random effects (p=580) 

3D-AR1cond Nonparametric with random effects by age 

and year, using partial correlations for 

age, year, and cohort. Conditional 

variation formulation 

Mean selectivity at age, process error and three partial 

correlations (k=14) and matrix of random effects (p=580) 

3D-AR1mar Nonparametric with random effects by age 

and year, using partial correlations for 

age, year, and cohort. Marginal variation 

formulation. 

Mean selectivity at age, process error and three partial 

correlations (k=14) and matrix of random effects (p=580) 

 

The selectivity equation details are given below. 

 

● Mod 0: Parametric double logistic 

○ 𝑆𝑒𝑙𝑎𝑔𝑒 =  𝑓1(𝑎𝑔𝑒) 

○ 𝑓1(𝑎𝑔𝑒)  =  1/(1 + 𝑒𝑥𝑝(−𝑠𝑙𝑝1 ∗ (𝑎𝑔𝑒 − 𝑖𝑛𝑓1)) ∗ (1 − 1/(1 + 𝑒𝑥𝑝(−𝑠𝑙𝑝2 ∗ (𝑎𝑔𝑒 −
𝑖𝑛𝑓2))) 

● Mod 1: Parametric double logistic w/ random effects on ascending parameters 

○ 𝑆𝑒𝑙𝑎𝑔𝑒,𝑦 =  𝑓1(𝑎𝑔𝑒) as above but: 

○ 𝑠𝑙𝑝1,𝑦 = 𝑠𝑙𝑝_𝑑𝑒𝑣1.𝑦 

○ 𝑖𝑛𝑓1,𝑦 = 𝑖𝑛𝑓_𝑑𝑒𝑣1,𝑦 

○ 𝑠𝑙𝑝_𝑑𝑒𝑣𝑦-𝑠𝑙𝑝_𝑑𝑒𝑣𝑦−1~𝑁(0, 𝜎) 

○ 𝑖𝑛𝑓_𝑑𝑒𝑣𝑦-𝑖𝑛𝑓_𝑑𝑒𝑣𝑦−1~𝑁(0, 4 ∗ 𝜎) 

● Mod 2: Semi-parametric double logistic * AR(1) by age 

○ 𝑆𝑒𝑙𝑎𝑔𝑒 =  𝑓1(𝑎𝑔𝑒) ∗ exp (𝑑𝑒𝑣𝑎𝑔𝑒) 

○ 𝑑𝑒𝑣𝑎𝑔𝑒~𝑀𝑉𝑁(0, 𝛴𝑎)  

● Mod 3: Semi-parametric double logistic * AR(1) by year 

○ 𝑆𝑒𝑙𝑎𝑔𝑒,𝑦 =  𝑓1(𝑎𝑔𝑒) ∗ exp (𝑑𝑒𝑣𝑦) 

○ 𝑑𝑒𝑣𝑦~𝑀𝑉𝑁(0, 𝛴𝑦)  

● Mod 4: Semi-parametric double logistic * 2D-AR(1) by age, year 

○ 𝑆𝑒𝑙𝑎𝑔𝑒,𝑦 =  𝑓1(𝑎𝑔𝑒) ∗ exp (𝑑𝑒𝑣𝑎𝑔𝑒,𝑦) 

○ 𝑑𝑒𝑣𝑎𝑔𝑒,𝑦~𝑀𝑉𝑁(0, 𝛴𝑎𝑔𝑒,𝑦)  

● Mod 5: Non-parametric by age 
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○ 𝑆𝑒𝑙𝑎𝑔𝑒 = 𝑓2(𝑎𝑔𝑒) 

○ 𝑓2(𝑎𝑔𝑒)  =  1/(1 + 𝑒𝑥𝑝(−(𝑝𝑎𝑟𝑎𝑔𝑒)) 

● Mod 6: Non-parametric AR(1) by year 

○ 𝑆𝑒𝑙𝑎𝑔𝑒,𝑦 = 1/(1 + 𝑒𝑥𝑝(−(𝑠𝑒𝑙𝑝𝑎𝑟𝑎𝑔𝑒 + 𝑑𝑒𝑣𝑦)) 

○ 𝑑𝑒𝑣𝑦~𝑀𝑉𝑁(0, 𝛴𝑦)  

● Mod 7: Non-parametric 2D AR(1) age, year 

○ 𝑆𝑒𝑙𝑎𝑔𝑒,𝑦 = 1/(1 + 𝑒𝑥𝑝(−(𝑠𝑒𝑙𝑝𝑎𝑟𝑎𝑔𝑒 + 𝑑𝑒𝑣𝑎𝑔𝑒,𝑦)) 

○ 𝑑𝑒𝑣𝑎𝑔𝑒,𝑦~𝑀𝑉𝑁(0, 𝛴𝑎𝑔𝑒,𝑦)  

● Mod 8: 3D AR(1) by a, y, and cohort using conditional variance  

○ 𝑆𝑒𝑙𝑎𝑔𝑒,𝑦 = 1/(1 + 𝑒𝑥𝑝(−(𝑠𝑒𝑙𝑝𝑎𝑟𝑎𝑔𝑒 + 𝑑𝑒𝑣𝑎𝑔𝑒,𝑦)) 

○ 𝑑𝑒𝑣𝑎𝑔𝑒,𝑦~𝑀𝑉𝑁(0, 𝛴𝑎𝑔𝑒,𝑐𝑜ℎ𝑜𝑟𝑡,𝑦)  

● Mod 9: 3D AR(1) by a, y, and cohort using marginal variance 

○ 𝑆𝑒𝑙𝑎𝑔𝑒,𝑦 = 1/(1 + 𝑒𝑥𝑝(−(𝑠𝑒𝑙𝑝𝑎𝑟𝑎𝑔𝑒 + 𝑑𝑒𝑣𝑎𝑔𝑒,𝑦)) 

○ 𝑑𝑒𝑣𝑎𝑔𝑒,𝑦~𝑀𝑉𝑁(0, 𝛴𝑎𝑔𝑒,𝑐𝑜ℎ𝑜𝑟𝑡,𝑦)  

where 𝑠𝑒𝑙𝑝𝑎𝑟𝑎𝑔𝑒 are age-specific parameters for the non-parametric selectivity curve, 𝑑𝑒𝑣𝑎𝑔𝑒,𝑦 are the 

random deviates for the non-parametric selectivity that are multivariate normal with covariance 𝛴.  

Selecting and validating flexible selectivity forms 

Below we fit the alternative selectivity options (Table 1) to explore model behavior and help understand 

the level of complexity and flexibility needed to appropriately model fisheries selectivity. We use three 

primary tools to compare and contrast these models. First, we use one-step-ahead (OSA) residuals which 

are an improved tool over the ubiquitous Pearson residuals (Trijoulet et al. 2023). These residuals are 

expected to be standard normal under a correctly-specified model. We focus on visual inspection via 

bubble plots for non-random patterns by age, year, or cohort, as is common for Pearson residuals, instead 

of relying on statistical tests of normality or other properties. In particular for this example we focus on 

residuals for ages 3-5 which have been identified as problematic previously. 

Second, we use marginal AIC for model selection. Model selection is not routinely used for stock 

assessment models because of the challenges associated with interpreting selection criteria when fitting to 

different types of data whose weights are often tuned and the use of penalized maximum likelihood 

(Maunder and Punt 2013, Punt et al. 2014). An added complication with the hierarchical models 

investigated here is that the penalty for the number of effective parameters does not include the random 

effects. Conditional AIC accounts for this but is not available at the moment. So, while the interpretation 

of differences in AIC is not as straightforward as in other statistical contexts, AIC still provides some 

important insight into the performance of the different models examined here. 

Finally, we are interested in the ability of the model to estimate selectivity in the current year and near-

term projections when no age data are available to inform selectivity. In previous models a 5-year average 

was used, but this ignores signals of annual and cohort trends in the data.   

Results 

Model fits 

Many models listed in Table 1 had poor performance (discussed more below) or do not have substantial 

flexibility to address the initial problem  (Table 2).  Additionally, model 9: 3D-AR1 with marginal 

variance did not converge. These models are ignored for clarity, and we focus on what we consider the 
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most promising two new models: 2D-AR1 and 3D-AR1cond, and include ParDev (which is similar to 

accepted model 19.1a), and the Constant model as a baseline. Model 8: 3D-AR1 with conditional variance 

resulted in the lowest AIC followed by model 1: ParDevs (Table 2). 

The estimated AR(1) parameters for the 2D-AR1 model are 0.869 (95% CI of 0.738-0.937) for the 

correlation by age and 0.628 (0.339-0.809) for the correlation by year, both positive and strongly 

statistically significant. The estimated process error was 0.259 (0.175-0.384). For the 3D-AR1 model the 

estimated partial correlations were 0.71 (0.566-0.868) for age, -0.076 (-0.597-0.455) for year, and 0.400 

(-0.254-1.053) for cohort. Thus, the year correlation is not significant, the cohort one positive but not 

significant, and the age correlation highly significant. Finally, the estimated process error for the 3D-AR1 

model was 0.277 (0.197-0.389) which was similar in magnitude and uncertainty as in the 2D model. 

Table 2. Comparison of selectivity models for the 2022 assessment model. Models selected for comparison are highlighted in 

grey. NLL=negative log likelihood, Fsh = fishery age composition; K=number of fixed effects; dAIC=delta AIC. 

Model Total 

NLL 
Fsh 

NLL 
K dAIC 2023 SSB B0 B40 2023 OFL 2023 ABC 

19.1 ADMB 
    

204,554 469,000 188,000 173,470 148,937 
0: Constant 573.3 228.6 182 112.3 219,996 468,000 187,000 196,809 168,216 
1: ParDevs 514.5 125.5 185 0.8 226,254 487,000 195,000 193,353 166,533 
2: Log-AR1-Age 561.1 211.8 188 100.0 220,416 473,000 189,000 205,025 175,152 
3: Log-AR1-Yr 564.0 221.5 188 105.8 222,619 477,000 191,000 197,323 168,703 
4: Log-2D-AR1 552.7 148.3 189 85.1 222,904 473,000 189,000 198,753 170,541 
5: Age-specific 530.8 209.9 192 47.4 218,010 470,000 188,000 208,421 177,853 
6: AR1-Yr 534.5 160.5 194 58.7 212,670 464,000 186,000 206,054 175,905 
7: 2D-AR1 509.4 113.6 195 10.6 226,073 480,000 192,000 194,805 167,410 
8: 3D-AR1 cond 503.1 115.7 196 0 225,539 473,000 189,000 194,824 167,577 

 

Spawning stock biomass (SSB) was relatively similar among the new TMB models, particularly in later 

years (Fig. 3) with a projected SSB of between 212 and 226 kt in 2023 (Table 2). However, the TMB 

models all had a higher 2023 SSB than 19.1a (Table 2) and lower uncertainty (Fig. 3). It is unclear why 

this is but is likely a configuration issue that can be resolved with more time. The TMB models differ in 

their calculation of ABC because rather than use the average fishery selectivity from the last five years of 

the assessment, they use predicted selectivity in 2023.   



8 

 

 

Figure 3. Resulting spawning stock biomass (SSB, M t) estimates and CV (panels) among the candidate models and the 2022 

accepted model 19.1a (“ADMB”). It is currently unclear why the CV is so much lower for the TMB models. 

The estimated annual selectivity at age also had the same general patterns, but with some important 

differences. All models estimated selectivity at ages 6-8 near 1 (Figs. 4 and 5). All models also estimated 

selectivity at age 2 to be near zero except for a period of about 2000-2010. For age 3, all models generally 

agreed and there appear to be meaningful annual changes, for example in 2008 selectivity was nearly 0.5, 

but dropped to around 0.2 by 2015.  

Key differences among models are concentrated in ages 4 and 5. As noted previously, these are the two 

ages with poor residuals for the ParDev approach. The largest differences were starting in 2000, with the 

two nonparametric models estimated lower age-4 selectivity (Fig. 5). Age 5 selectivity was always 

estimated over 0.75 but again there are some differences annually. Overall, all three models estimated 

distinct patterns of age 4 and 5 selectivity. This is somewhat surprising given the similarity of the 2D and 

3D AR(1) approaches. Differences in estimates in projected years are also meaningful, but described 

separately below. 
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Figure 4. Perspective plots of estimated fisheries selectivity for candidate models. 

 

 

Figure 5. Annual estimates of selectivity at age (panels) with uncertainty (ribbons, +/- 1 SE) for candidate models. The last year 

with fishery age composition is 2021 and denoted with a vertical line.  
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Model selection and validation 

OSA residuals for the Constant model show clear patterns and unexpectedly large OSA residuals (Fig. 6). 

This justifies more flexible selectivity forms. The ParDevs model shows much improvement, but still has 

lingering patterns in ages 4, 5, and 9, despite having a similar AIC value. The two non-parametric models 

eliminated the previous issues, and have no lingering age or year patterns. There does appear to be a 

lingering cohort pattern for the 2012 year class (diagonal positive residuals). 

 

Figure 6. OSA residuals for the three candidate models compared to a model with time-invariant selectivity (Constant). 

Residuals are expected to have a standard normal distribution, so residuals larger than 3 are highlighted as a different shape.  

One important property of OSA residuals is that they are expected to have a standard normal distribution. 

Standard QQ plots (Fig. 7) show that the unexpectedly large residuals using the Constant model are 

eliminated by the three time-varying selectivity models. However, there still seem to be some 

distributional issues remaining, although we judge this to be of minor concern. We do note that the QQ 

plots for the two non-parametric models appear slightly better than the ParDevs approach currently used 

in 19.1a.   
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Figure 7. Quantile-quantile plots of candidate models OSA residuals, which are expected to be standard normal and thus fall on 

the black line. Deviation from that implies model misfit. 

 

Projection performance 

Fisheries selectivity for the current assessment year has no fisheries age composition data and so needs to 

be extrapolated by the assessment model. Further, reference point and ABC calculations rely on estimates 

of selectivity in the following year. These projected selectivities are expected to vary among models. The 

ParDevs model which has a random walk on parameters will have the same prediction as the last year 

with data, but increasing uncertainty with further extrapolation into the future (Fig. 8). The two AR(1) 

models will converge toward their stationary means, but the addition of the cohort effect for the 3D 

method will affect the estimates and transitory behavior toward the mean. For many ages there is little 

meaningful difference. The age with the most divergence among models is age 4, where selectivity is 0.91 

for the ParDevs, 0.68 for the 2D-AR1 model, and 0.63 for the 3D-AR1 model. Interestingly the selectivity 

is increasing for the 2D model and decreasing for the 3D model for this age. We hypothesize this is 

caused by a cohort effect, although it is not strictly statistically significant. 
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Figure 8. Behavior of the selectivity modules when projecting past the last year with fishery age comp data (2021; vertical line). 

Annual estimates of selectivity at age (panels) with uncertainty (ribbons, +/- 1 SE) for candidate models. Ages 1, 6,7 and 8 are 

left off for visual clarity as they are nearly constant at 0 or 1 (see Fig. 5). The ParDev model is a random walk so its projections 

are constant with increasing uncertainty. The 2D-AR1 model reverts back to its stationary mean. The 3D-AR1 model accounts 

for cohort effects and thus behaves slightly differently from the 2D version. 

 

There are thus important differences, especially in younger ages, for the predicted selectivity at the two 

important extrapolated years (Fig. 9). 

 

Figure 9. Estimated selectivity with uncertainty (+/- 1 SE) for the three models in the two important projection years. 
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Conclusions 

Moving from ADMB to TMB has a few minor disadvantages which are clearly outweighed by the 

advantage of being able to estimate hierarchical models in a statistically defensible way. Hierarchical or 

“state space” models are now considered “best practices” for stock assessment (Punt 2023) and TMB is 

the best available tool to accommodate that framework. We were able to bridge from the ADMB model 

19.1a to within a very small degree of error. As such we recommend retiring the ADMB model and 

proceeding with model 23 in TMB for use moving forward. This modeling framework will allow for 

important future extensions beyond fisheries selectivity as well (e.g., maturity and weight at age 

smoothing internally)) 

It is also clear that fisheries selectivity varies over time and that the current approach of random walk 

parameter deviations (ParDev model) is insufficiently flexible for some ages, as determined by residual 

patterns. The semi-parametric models explored here did not perform well, for reasons that are not 

completely clear at the moment. But two of the non-parametric models were very promising and had 

improved residual patterns. The 3D model had the lowest AIC, with the 2D model about 10 units worse. 

We believe both non-parametric models would make for improved fits and projected selectivities for use 

in calculating management quantities. The major disadvantage of the non-parametric models is that they 

are about 10 times slower to fit than the parametric version with annual deviates (ParDevs), going from 4 

to 40 minutes to optimize and do the delta method calculations.  

Estimating non-parametric components within an assessment takes care, as putting flexibility in the 

wrong component can lead to poor management advice (Szuwalski et al. 2017, Fisch et al. 2023). We feel 

confident that selectivity does vary through time, and that the forms examined here do a good job at 

capturing this change. The new forms also did not lead to major changes in status, trend, or reference 

points among different selectivity options, but there is a remaining discrepancy when compared to 19.1a 

that we need to investigate and resolve. Overall, we conclude that either non-parametric option would 

make for an improved model, with the 3D version fitting slightly better and having a cohort effect, but 

being more difficult to estimate. We therefore propose models 23.0a as 23 but with 2D AR(1) fisheries 

selectivity, and 23.0b with 3D AR(1) conditional variance. We leave it up to the PT discretion whether 

to adopt these models this year. 
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