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Acoustic-trawl surveys of Alaska pollock in EBS

● Currently, estimate relative error using 1D geostatistics
● Typical coefficient of variation: 4-8%
● Seems too precise, so inflated to 20% for stock assessment
● What is it really?



Estimating uncertainty is a challenge for
acoustic-trawl surveys

● A few more-comprehensive estimates elsewhere:
○ Newfoundland cod (Rose et al. 1999)
○ Antarctic krill (Demer 2004)
○ New Zealand hoki (O’Driscoll 2004)
○ Norwegian herring (Løland et al. 2007)

● …And for pollock at AFSC:
○ 2007: Walline, “Geostatistical simulations of EBS walleye pollock…”
○ 2016: Woillez et al., “Evaluating total uncertainty…”
○ 2020-present: myself



Why this is a hard problem

● Combining two datasets with:
○ Unique uncertainties/biases
○ Very different spatial scales

● Acoustic data are extremely 
non-Gaussian
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● Multiple steps between acoustics/ 
trawls and numbers/biomass



Parametric and non-parametric bootstrapping

● Follows attempts at integrated 
Bayesian modeling

● Resampling/simulation for each 
step of calculations

● Mirrors standard MACE survey 
analysis

● Computationally fast and stable
○ Can investigate contributions of 

individual sources of uncertainty
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● Follows attempts at integrated 
Bayesian modeling

● Resampling/simulation for each 
step of calculations

● Mirrors standard MACE survey 
analysis

● Computationally fast and stable
○ Can investigate contributions of 

individual sources of uncertainty
● Key: interpolate acoustics and 

trawls to common spatial grid
○ Conditional geostatistical simulation
○ Randomized spatial assignment



Conditional (non-) Gaussian geostatistical simulation

● Standard routine for Gaussian data
○ Variogram defines covariance matrix Q of desired simulated data x
○ Uses “Cholesky trick,” a.k.a. “Lower-upper Gaussian simulation,” LUGS
○ If Q = LL’, then x = L z, where z ~ i.i.d. Normal(0, 1)

● Non-Gaussian data: can transform it, but complicated and/or biased
● But...turns out, z doesn’t have to be normal! Just need var(z) = 1

○ Lower-upper non-Gaussian simulation: LUNGS
○ Choose z from {Gamma, Inv. Gamma, Inv. Gaussian, Lognormal} based on KLD of x 

from observed backscatter



Conditional simulations on 10 x 10 km grid



Randomized acoustic-trawl assignment

● Trawl composition gives us species, 
sizes, target strengths

● Each acoustic interval scaled by 
nearest trawl

● Are these scaling factors 
representative of area?

● Randomly assign each grid cell to a 
trawl, probability ~ distance-1
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Bootstrapping procedure at each iteration:

Apply random “calibration error” from 
normal distribution with standard deviation 
of 0.1 dB (about 2.4% in linear terms).

Based on variability in past calibrations 
and acoustic theory.
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Selectivity correction Spatial sampling error: simulate 
backscatter field, conditional on variogram 
model and data observed along transects.
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Choose random trawl selectivity curve. 

Based on models fit to pocket-net data by 
Kresimir Williams et al.

Fish length (cm)

R
et

en
tio

n 
pr

ob
ab

ili
ty



Bootstrapping procedure at each iteration:
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Selectivity correction Resample catch (individual fish) in each 
trawl with replacement.

Calculate species/length composition, 
corrected for selectivity using function 
from prior step.
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Drop one trawl at random.

Assign each grid cell to a trawl, with 
probability inversely related to distance. 



Bootstrapping procedure at each iteration:
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Selectivity correction Generate random length-TS function for 
pollock. TS uncertainty is 0.14 dB, about 
3% in linear terms (Lauffenburger et al 
2023).

For all other species, assume ± 3 dB 
uncertainty (100 % in linear terms–being 
conservative).



Bootstrapping procedure at each iteration:
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Selectivity correction Resample age data (otolith reads) from 
survey to get age composition. 

Use to parameterize standard Gaussian 
mixture model for age-length key.



Bootstrapping procedure at each iteration:
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Selectivity correction Resample fish measured during survey 
with replacement.

Generate length-weight function based on 
resampled measurements (De Robertis 
and Williams 2008).



Total pollock abundance and biomass 2007-2022

CV (%) from:
Bootstrap (1D geostats)

Median new CV / old CV:
● 1.57 for numbers
● 1.27 for biomass
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Contributions of individual uncertainty sources

● Re-analyzed all surveys, turning on one 
component at a time

● Largest individual sources, on average:
○ Spatial sampling error
○ TS models
○ Echosounder calibration
○ Trawling-related sources 

(mostly for abundance)

● Some differences year-to-year
● EBS is homogenous–trawling likely 

more important in GOA



Caveats

● A few sources of uncertainty remain unaccounted for:
○ Acoustic classification errors
○ Near-bottom acoustic dead zone
○ Survey domain/geographic availability
○ Fish movement
○ Some remaining questions about calibration and TS

● Currently, ignoring bottom 3 meters of water column (~25% of biomass)
● Uncertainty of absolute biomass vs. relative index
● Results may vary in other ecosystems, but…



Works in GOA too: Shelikof Strait, Winter 2023

Age 1 2 3 4 5 6 7 8 9 10+

CV (%) 27.1 24.2 30.2 21.2 18.8 12.9 27.3 41.3 31.1 9.6



Conclusions

● Total biomass uncertainty for MACE EBS pollock surveys is typically 5-11%
○ For individual age classes, 10-30%

● Spatial sampling error, TS, and calibration are main sources
○ For less abundant age classes/species, uncertainty may be higher/have different drivers
○ More transects = less uncertainty

● On average 1.9 and 1.5 x 1D geostatistical estimates for numbers and 
biomass

● 2-4 times smaller than assumed in stock assessment
● Framework can be used to think about effort allocation/reduction



Questions?

Thanks to the Oscar Dyson crews and everyone in MACE. Especially the calibrators!



LUNGS details and the “Cholesky trick”

● Normal “lower-upper Gaussian simulation” (LUGS):
○ Use data + variogram model to define mean (μx) and covariance (Q) for simulation locations
○ Cholesky (LU) decomposition of covariance matrix Q = L L-1

○ If the vector z is i.i.d standard normal, product x = L z will have covariance Q
○ Q = cov(x) = E[x x’]
○ cov(z) = E[z z’] = I
○ Q = L L’ = L I L’ = L E[z z’] L’ = E[(L z) (L z)’]
○ From definition of covariance, cov(L z) = Q

● But, z does not have to be normal–as long as var(z) = 1.0, cov(Lz) = Q
○ Get means to match: μz = L-1 μx
○ Know required mean and variance (1.0) for each element of z, can then translate into 

parameters for whatever non-negative distribution you want



Trawl shuffle details

● Randomly assign each acoustic 
cell to a trawl

● Inverse distance weighted: 1 / d a

● Exponent a set so average pixel 
has 50/50 chance of getting 
nearest trawl when ½ distance to 
nearest neighbor



Individual error contributions through time



Coefficients of variation over time



Separating backscatter into “scaling strata”

Scaling Stratum 2 
(small, dense schools)

Scaling Stratum 1 
(continuous 
near-bottom 
backscatter)


