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Introduction 
The “TCSAM02” (Tanner Crab Stock Assessment Model, version 2) modeling framework was developed 
“from scratch” to eliminate many of the constraints imposed on potential future assessment models by 
TCSAM2013, the previous assessment model framework (Stockhausen, 2016). Like TCSAM2013, 
TCSAM02 uses AD Model Builder libraries as the basis for model optimization using a maximum 
likelihood (or Bayesian) approach. The model code for TCSAM02 is available on GitHub (the 2021 
assessment model code is available at “202009CPTVersion”). TCSAM02 was first used for the Tanner 
crab assessment in 2017 (Stockhausen, 2017) and will be used until a transition is made to Gmacs (the 
Generalized Model for Alaska Crab Stocks). Gmacs is intended to be used for all crab stock assessments 
conducted for the North Pacific Fisheries Management Council (NPFMC), including both lithodid (king 
crab) and Chionoecetes (Tanner and snow crab) stocks, while TCSAM02 is specific to Chionoecetes 
biology (i.e., terminal molt). 

TCSAM02 is referred to here as a “modeling framework” because, somewhat similar to Stock Synthesis 
(Methot and Wetzel, 2013), model structure and parameters are defined “on-the-fly” using control files—
rather than editing and re-compiling the underlying code. In particular, the number of fisheries and 
surveys, as well as their associated data types (abundance, biomass, and /or size compositions) and the 
number and types of time blocks defined for every model parameter, are defined using control files in 
TCSAM02 and have not been pre-determined. Priors can be placed on any model parameter. New data 
types (e.g., growth data) can also be included in the model optimization that could not be fit with 
TCSAM2013. Additionally, status determination and OFL calculations can be done directly within a 
TCSAM02 model run, rather having to run a separate “projection model”. 

New features (2022 assessment): 

1. Added ability to estimate initial abundance-at-size (as an alternative to building up the population 
from recruitments or using equilibrium assumptions). 

2. Added ability to run multi-year projections with arbitrary directed fishery fully-selected fishing 
mortality rates. 

New features (2021 assessment): 

1. Dirichlet-Multinomial likelihood for fitting size composition data added as an option. 
2. Ability to specify “tail compression” (on a by-dataset basis) when fitting size composition data. 



3. “Use flags” (with values 0 or 1) have been added to input data files to allow aggregate catch data 
and size composition data inputs to be easily removed (or added back in) from any likelihood at 
an annual level. 

4. Ascending normal and double-normal (with plateau) selectivity functions have been implemented 
as options. 

5. Outputs reflecting model fits have been expanded. 

New features (2020 assessment): 

1. The ability to programmatically specify a retrospective model run (i.e., running the model with a 
specified number of the most recent years of data and associated parameters excluded from the 
model fit and estimation). 

2. An option to estimate selectivity/availability curves based on cubic splines. 
3. An option to apply selectivity (catchability) and/or availability curves estimated outside the 

model to survey or fishery data. 
4. An option to apply prior probabilities determined outside the model to selectivity (catchability) 

and/or availability curves estimated inside the model. 
5. An option to estimate “additional uncertainty” parameters associated with a survey. 

 

Model Description 
A. General population dynamics 
TCSAM02 is a stage/size-based population dynamics model. 
Population abundance at the start (July 1) of year y in the 
model, !!,#,$,%,&, is characterized by sex x (male, female), 
maturity state m (immature, mature), shell condition s (new 
shell, old shell), and size z (carapace width, CW). Changes in 
abundance due to natural mortality, molting and growth, 
maturation, shell aging, fishing mortality and recruitment are 
tracked on an annual basis. Because the principal crab 
fisheries occur during the winter, the model year runs from 
July 1 to June 30 of the following calendar year. 

The order of calculation steps to project population 
abundance from year y to y+1 depends on the assumed timing 
of the fisheries ("#!') relative to molting/growth/mating ("#!$) 
in year y. The steps when the fisheries occur before 
molting/growth/mating ("#!' ≤ "#!$) are outlined below first 
(Steps A1.1-A1.4), followed by the steps when 
molting/growth/mating occurs after the fisheries ("#!$ < "#!'; 
Steps A2.1-A2.4). 

A1. Calculation sequence when &'() ≤ &'(* 

Step A1.1: Survival prior to fisheries 
Natural mortality is applied to the population from the start of the model year (July 1) until just prior to 
prosecution of pulse fisheries for year y at "#!'. The numbers surviving to "#!' in year y are given by: 

 

Fig. 1. Timing of annual events in TCSAM02 when 
fisheries occur before molting/growth/mating. 



!!,#,$,%,&+ = ),-!,#,$,%,&∙/0!' ∙ !!,#,$,%,& A1.1 

where M represents the annual rate of natural mortality in year y on crab classified as x, m, s, z. 

Step A1.2: Prosecution of the fisheries 
The directed and bycatch fisheries are modeled as simultaneous pulse fisheries occurring at "#!' in year y. 
The numbers that remain after the fisheries are prosecuted are given by: 

!!,#,$,%,&1 = ),'!,#,$,%,&( ∙ !!,#,$,%,&+  A1.2 

where +!,#,$,%,&2  represents the total fishing mortality (over all fisheries) on crab classified as x, m, s, z in 
year y. 

Step A1.3: Survival after fisheries to time of molting/growth/mating 
Natural mortality is again applied to the population from just after the fisheries to the time just before 
molting/growth/mating occurs for year y at "#!$ (generally Feb. 15). The numbers surviving to "#!$ in 
year y are given by: 

!!,#,$,%,&3 = ),-!,#,$,%,&∙(/0!$,/0!') ∙ !!,#,$,%,&1  A1.3 

where, as above, M represents the annual rate of natural mortality in year y on crab classified as x, m, s, z. 

Step A1.4: Molting, growth, and maturation 
The changes in population structure due to molting, growth and maturation of immature (new shell) crab, 
as well as the change in shell condition for mature new shell (MAT, NS) crab to mature old shell (MAT, 
OS) crab due to aging, are given by: 

!!,#,-62,78,&9 = ,!,#,& ∙-Θ!,#,&,&) ∙ !!,#,:--,78,&)3

&)
 A1.4a 

!!,#,:--,78,&9 = (1 − ,!,#,&) ∙-Θ!,#,&,&) ∙ !!,#,:--,78,&)3

&)
 A1.4b 

!!,#,-62,;8,&9 = !!,#,-62,;8,&3 + !!,#,-62,78,&3  A1.4c 

where Θ!,#,&,&) is the growth transition matrix in year y for an immature new shell (IMM, NS) crab of sex 
x and pre-molt size z’ to post-molt size z and ,!,#,& is the probability that a just-molted crab of sex x and 
post-molt size z has undergone its terminal molt to maturity (MAT). All crab that molted remain new 
shell (NS) crab. Additionally, all mature crab that underwent terminal molt to maturity the previous year 
are assumed to change shell condition from new shell to old shell (A1.4c). Note that the numbers of 
immature old shell (IMM, OS) crab are identically zero in the current model because immature crab are 
assumed to molt each year until they undergo the terminal molt to maturity; consequently, the “missing” 
equation for m=IMM, s=OS is unnecessary. 



Step A1.5: Survival to end of year, recruitment, and update to start of next year 
Finally, the population abundance at the start of year y+1, due to natural mortality on crab from just after 
the time of molting/growth/mating in year y until the end of the model year (June 30) and recruitment 
(4!,#,&) at the end of year y of immature new shell (IMM, NS) crab by sex x and size z, is given by: 

!!<+,#,$,%,& = 5)
,-!,#,*++,,-,&∙(+,/0!$) ∙ !!,#,:--,78,&9 + 4!,#,& 6 = 788, : = ;<
),-!,#,$,%,&∙(+,/0!$) ∙ !!,#,$,%,&9 																										 >#ℎ)@AB:)																

 A1.5 

A2. Calculation sequence when &'(* < &'() 

Step A2.1: Survival prior to molting/growth/mating 
As in the previous sequence, natural mortality is first applied to the population from the start of the model 
year (July 1), but this time until just prior to molting/growth/mating in year y at "#!$ (generally Feb. 15). 
The numbers surviving at "#!$ in year y are given by: 

!!,#,$,%,&+ = ),-!,#,$,%,&∙/0!$ ∙ !!,#,$,%,& A2.1 

where M represents the annual rate of natural mortality in year y on crab classified as x, m, s, z. 

Step A2.2: Molting, growth, and maturation 
The changes in population structure due to molting, growth and maturation of immature new shell (IMM, 
NS) crab, as well as the change in shell condition for mature new shell (MAT, NS) crab to mature old 
shell (MAT, OS) crab due to aging, are given by: 

!!,#,-62,78,&1 = ,!,#,& ∙-Θ!,#,&,&) ∙ !!,#,:--,78,&)+

&)
 A2.2a 

!!,#,:--,78,&1 = (1 − ,!,#,&) ∙-Θ!,#,&,&) ∙ !!,#,:--,78,&)+

&)
 A2.2b 

!!,#,-62,;8,&1 = !!,#,-62,;8,&+ + !!,#,-62,78,&+  A2.2c 

where Θ!,#,&,&) is the growth transition matrix in year y for an immature new shell (IMM, NS) crab of sex 
x and pre-molt size z’ to post-molt size z and ,!,#,& is the probability that a just-molted crab of sex x and 
post-molt size z has undergone its terminal molt to maturity. Additionally, mature new shell (MAT, NS) 
crab that underwent their terminal molt to maturity the previous year are assumed to change shell 
condition from new shell to old shell (A2.2c). Again, the numbers of immature old shell crab are 
identically zero because immature crab are assumed to molt each year until they undergo the terminal 
molt to maturity. 

Step A2.3: Survival after molting/growth/mating to prosecution of fisheries 
Natural mortality is again applied to the population from just after molting/growth/mating to the time at 
which the fisheries occur for year y (at "#!'). The numbers surviving at "#!' in year y are then given by: 

!!,#,$,%,&3 = ),-!,#,$,%,&∙(/0!',/0!$) ∙ !!,#,$,%,&1  A2.3 



where, as above, M represents the annual rate of natural mortality in year y on crab classified as x, m, s, z. 

Step A2.4: Prosecution of the fisheries 
The directed fishery and bycatch fisheries are modeled as pulse fisheries occurring at "#!' in year y. The 
numbers that remain after the fisheries are prosecuted are given by: 

!!,#,$,%,&9 = ),'!,#,$,%,&( ∙ !!,#,$,%,&3  A2.4 

where +!,#,$,%,&2  represents the total fishing mortality (over all fisheries) on crab classified as x, m, s, z in 
year y. 

Step A2.5: Survival to end of year, recruitment, and update to start of next year 
Finally, population abundance at the start of year y+1 due to natural mortality on crab from just after 
prosecution of the fisheries in year y until the end of the model year (June 30) and recruitment of 
immature new (IMM, NS) shell crab at the end of year y (4!,#,&) and are given by: 

!!<+,#,$,%,& = 5)
,-!,#,*++,,-,&∙(+,/0!') ∙ !!,#,:--,78,&9 + 4!,#,& 6 = 788, : = ;<
),-!,#,$,%,&∙(+,/0!') ∙ !!,#,$,%,&9 																										 >#ℎ)@AB:)																

 A2.5 

  



B. Parameter specification  
Because parameterization of many model processes (e.g., natural mortality, fishing mortality) in 
TCSAM02 is fairly flexible, it is worthwhile discussing how model processes and their associated 
parameters are configured in TCSAM02 before discussing details of the model processes themselves. 
Each type of model process has a set of (potentially estimable) model parameters and other information 
associated with it, but different “elements” of a model process can be defined that apply, for example, to 
different segments of the population and/or during different time blocks. In turn, several “elements” of a 
model parameter associated with a model process may also be defined (and applied to different elements 
of the process). At least one combination of model parameters and other information associated with a 
model process must be defined—i.e., one process element must be defined. 

Model processes and parameters are configured in a “ModelParametersInfo” file, one of the three control 
files required for a model run (the others are the “ModelConfiguration” file and the “ModelOptions” file). 
As an example of the model processes and parameter specification syntax, Text Box 1 presents the part of 
a “ModelParametersInfo” file concerned with specifying fishing processes in the directed Tanner crab 
fishery.  

In Text Box 1, the keyword “fisheries” identifies the model process in question. The first section, 
following the “PARAMETER_COMBINATIONS” keyword (up to the first set of triple blue dots), 
specifies the indices associated with fishing process parameters (pHM, pLnC, pDC1, pDC2, pDC3, 
pDC4, pDevsLnC, pLnEffX, pLgtRet), selectivity and retention functions (idxSelFcn, idxRetFcn), and 
effort averaging time period (effAvgID) that apply to a single fishing process element. In this example, 
the indices for the selectivity and retention functions, as well as those for the effort averaging time period, 
constitute the “other information” specified for each fishing process element. Each fishing process 
element in turn applies to a specific fishery (FISHERY=1 indicates the directed fishery, in this case), time 
block (specified by YEAR_BLOCK), and components of the model population (specified by SEX, 
MATURITY STATE, and SHELL CONDITION). Using indices to identify which parameters and 
selectivity and retention functions apply to a given combination of fishery/time block/sex/maturity 
state/shell condition allows one to “share” individual parameters and selectivity and retention functions 
across different fishery/time block/sex/maturity state/shell condition combinations. 

The second section (following the “PARAMETERS” keyword) determines the characteristics for each of 
the fishing process parameters, organized by parameter name (note: the parameters associated with the 
different selectivity and retention functions are specified in a different section of the 
ModelParametersInfo file). Here, each parameter name corresponds to an ADMB 
“param_init_bounded_number_vector” in the model code—the exception being pDevsLnC, which 
corresponds to an ADMB “param_init_bounded_vector_vector”.  

Each row under a “non-devs” parameter name in the fisheries section (e.g., pLnC) specifies the index 
used to associate an element of the parameter with the fishing processes defined in the 
PARAMETER_COMBINATIONS section, as well as characteristics of the element in the associated 
ADMB number_vector (upper and lower bounds, initial value, and initial estimation phase), various flags 
for initialization (“jitter”, “resample”), definition of an associated prior probability distribution, and a 
label. Each row under a “devs” parameter name (e.g., pDevsLnC) specifies much the same information 
for the associated ADMB devs vector, with the “read” flag replacing the “initial value” entry. If “read?” is 
TRUE, then a vector of initial values is read from the file after all “info” rows for the devs parameter have 



been read. The “jitter” flag (if set to TRUE) provides the ability to change the initial value for an element 
of a non-devs parameter using a randomly selected value based on the element’s upper and lower bounds. 
For a devs parameter, an element with jitter set to TRUE is initialized using a vector of randomly-
generated numbers (subject to being a devs vector within the upper and lower bounds). The “resample” 
flag was intended to specify an alternative method to providing randomly-generated initial values (based 
on an element’s prior probability distribution, rather than its upper and lower bounds), but this has not yet 
been fully implemented. 

Some model processes apply only to specific segments of the population (e.g., growth only applies to 
immature, new shell crab). In general, though, a model process element can be defined to apply to any 
segment of the population (by specifying SEX, MATURITY STATE, and SHELL CONDITION 
appropriately) and range of years (by specifying YEAR_BLOCK). In turn, an element of a parameter may 
be “shared” across multiple processes by specifying the element’s index in multiple rows of a 
PARAMETERS_COMBINATION block.  

 



 

Text Box 1. Abbreviated example of process and parameter specifications in a “ModelParametersInfo” file for fishing mortality in TCSAM02. 

Only parameter combinations and parameters relevant to the directed fishery are shown. Input values are in black text, comments are in green, 

triple blue dots indicate additional input lines not shown. 

#------------------------------- 
# Fishery parameters 
#------------------------------- 
fisheries #process name 
PARAMETER_COMBINATIONS 
42  #number of rows defining parameter combinations for all fisheries 
#Directed Tanner Crab Fishery (TCF)                                                                         
#                                          |MATURITY|SHELL|                                |pDevs| pLn | pLgt| idx  | idx  |  eff  | 
#id  FISHERY  YEAR_BLOCK             SEX   | STATE  |COND |  pHM  pLnC pDC1 pDC2 pDC3 pDC4 | LnC | EffX| Ret |SelFcn|RetFcn| AvgID | label 
1       1     [-1:1964]              MALE      ALL    ALL     1    1    0     0   0    0      0      0    0     9       5       0    TCF:_M_T1 
2       1     [1965:1984;1987:1990]  MALE      ALL    ALL     1    2    0     0   0    0      1      0    0     9       5       0    TCF:_M_T2 
3       1     [1991:1996]            MALE      ALL    ALL     1    2    0     0   0    0      1      0    0    10       6       0    TCF:_M_T3 
4       1     [2005:2009]            MALE      ALL    ALL     1    2    0     0   0    0      1      0    1    11       7       0    TCF:_M_T4 
5       1     [2013:-1]              MALE      ALL    ALL     1    2    0     0   0    0      1      0    1    12       8       0    TCF:_M_T5 
6       1     [-1:1964]              FEMALE    ALL    ALL     1    1    0     1   0    0      0      0    0    13       0       0    TCF:_F_T1 
7       1     [1965:1984;1987:1996]  FEMALE    ALL    ALL     1    2    0     1   0    0      1      0    0    13       0       0    TCF:_F_T2 
8       1     [2005:2009;2013:-1]    FEMALE    ALL    ALL     1    2    0     1   0    0      1      0    0    14       0       0    TCF:_F_T3 
… 
PARAMETERS 
pHM #handling mortality (0-1) 
3   #number of parameters 
#   |   limits    |       | initial | start |         |-       priors           -| 
#id |lower   upper|jitter?| value   | phase |resample?| wgt| type| params| consts| label 
1      0       1    OFF     0.321      -1       OFF      1   none   none    none    handling_mortality_for_crab_pot_fisheries 

… 
pLnC #base (ln-scale) capture rate (mature males) 
9    #number of parameters 
#   |   limits    |       |  initial   | start |         |-       priors           -| 
#id |lower   upper|jitter?|   value    | phase |resample?| wgt| type| params| consts| label 
 1    -15     15     OFF   -2.995732274    -1      OFF      1   none  none    none      TCF:_base_capture_rate,_pre-1965_(=0.05) 
 2    -15     15     ON    -1.164816291     1      OFF      1   none  none    none      TCF:_base_capture_rate,_1965+ 

… 
pDC1 #main temporal ln-scale capture rate offset 
0    #number of parameters 
pDC2 #ln-scale capture rate offset for female crabs 
6    #number of parameters 
#   |   limits    |       |  initial   | start |         |-       priors            -| 
#id |lower  upper |jitter?|   value    | phase |resample?|  wgt  type  params  consts| label 
1    -5.0    5.0     ON    -2.058610432    1      OFF       1.0  none   none    none   TCF:_female_offset 

… 
pDevsLnC #annual ln-scale capture rate deviations 
6        #number of parameter vectors 
#   | index  |             index                     |       |   limits     |        |initial |start |         |-      priors                 -| 
#id |  type  |             block                     | read? |lower   upper | jitter?| value  |phase |resample?|  wgt | type | params | consts |label 
 1     YEAR   [1965:1984;1987:1996;2005:2009;2013:-1]  FALSE   -15     15       ON       0       1      OFF       2.0  normal    0 1     none    TCF:_T2345 

… 



C. Model processes: natural mortality 
The natural mortality rate applied to crab of sex x, maturity state m, shell condition s, and size z in year y, 
!!,#,$,%,&, can be specified using one of two parameterizations. The first parameterization option uses a 
ln-scale parameterization with an option to include an inverse- size dependence using Lorenzen’s 
approach: 

"#!!,#,$,% = %!,#,$,%' +' (%!,#,$,%(
)

(*+
 C.1a 

!!,#,$,%,& = )
exp-"#!!,#,$,%. /0	2345#65#	378/3#	/9	#38	95"5:85;

exp-"#!!,#,$,%. ∙
6,-%.
6

/0	2345#65#	378/3#	/9	95"5:85;
 

C.1b 

C.1c 

where the %'  and the (%( ’s are (potentially) estimable parameters defined for time block T, sex S 
(MALE, FEMALE, or ANY), maturity M (IMMATURE, MATURE, or ANY), and shell condition S 
(NEWSHELL, OLDSHELL, or ANY), and {y,x,m,s} falls into the set {T,X,M,S}. In Eq. C.1c, 6,-%. 
denotes the specified reference size (mm CW) for the inverse-size dependence. 

The second parameterization option uses an arithmetic parameterization in order to provide backward 
compatibility with the 2016 assessment model based on TCSAM2013. In TCSAM2013, the natural 
mortality rate !!,#,$,%,& was parameterized using: 

!!,#,$*/00,%,& = !,-%. ∙ (!/00 C.2a 

!!,#,$*012,%,& = =
!,-%. ∙ (!#,012 38ℎ54?/95

!,-%. ∙ (!#,012 ∙ (!#,012
2 1980 ≤ E ≤ 1984

 C.2b 

where !,-%. was a fixed value (0.23 yr-1), (!/00 was a multiplicative factor applied for all immature 
crab, the (!#,012 were sex-specific multiplicative factors for mature crab, and the (!#,012

2  were 
additional sex-specific multiplicative factors for mature crab during the 1980-1984 time block (which has 
been identified as a period of enhanced natural mortality on mature crab, the mechanisms for which are 
not understood). While it would be possible to replicate Eq.s C.2a and C.2b using ln-scale parameters, 
TCSAM2013 also placed informative arithmetic-scale priors on some of these parameters—and this could 
not be duplicated on the ln-scale. Consequently, the second option uses the following parameterization, 
where the parameters (and associated priors) are defined on the arithmetic-scale: 

"#!!,#,$,% = ln	[%!,#,$,%' ] +' ln	[(%!,#,$,%( ]
)

(*+
 C.3a 

A system of equations identical to C.2a-b can be achieved under the following assignments: 

%{!,#,$,%}∈{2*166,7*166,0*166,8*166}
' =	!,-%. C.4a 

(%{!,#,$,%}∈{2*166,7*166,0*/00,8*166}
+ = (!/00  C.4e 

(%{!,#,$,%}∈{2*166,7*#,0*012,8*166}
+ = (!#,012  C.4f 

(%{!,#,$,%}∈{2*+9:';+9:),7*#,0*012,8*166}
< = (!#,012

2   C.4g 



where unassigned (%!,#,$,%(  are set equal to 1. Pending further model testing using alternative model 
configurations, the TCSAM2013 option is standard. 

It is worth noting explicitly that, given the number of potential parameters above that could be used, 
extreme care must be taken when defining a model to achieve a set of parameters that are not confounded 
and are, at least potentially, estimable. 

D. Model processes: growth 
Because Tanner crab are assumed to undergo a terminal molt to maturity, in TCSAM02 only immature 
crab experience growth. Annual growth of immature crab is implemented as using two options, the first 
based on a formulation used in Gmacs and the second (mainly for purposes of backward compatibility) 
based on that used in TCSAM2013. In TCSAM02, growth can vary by time block and sex, so it is 
expressed by sex-specific transition matrices for time block t, Θ=,#,&,&!, that specify the probability that 
crab of sex x in pre-molt size bin 6> grow to post-molt size bin 6 at molting.  

In the Gmacs-like approach (the standard approach as of May, 2017), the sex-specific growth matrices are 
given by: 

Θ=,#,&,&! = :=,#,&! ∙ L Γ N
6′′ − 6=̅,#,&!

R=,#
S;6′′

&?,(@/<

&;,(@/<

 
Sex-specific (x) transition matrix for 
growth from pre-molt 6> to post-molt 6, 
with 6 ≥ 6> 

D.1a 

:=,#,&! = UL ΓN
6′′ − 6=̅,#,&!

R=,#
S;6′′

B

&!
V

;+

 
Normalization constant so  
1 ='Θ=,#,&,&!

&

 D.1b 

6=̅,#,&! = 5-",$ ∙ 6>,",$ Mean size after molt, given pre-molt size 
6> D.1c 

where the integral represents a cumulative gamma distribution across the post-molt (6) size bin. This 
approach may have better numerical stability properties than the TCSAM2013 approach below. 

The TCSAM2013 approach is an approximation to the Gmacs approach, where the sex-specific growth 
matrices Θ=,#,&,&! are given by 

Θ=,#,&,&! = :=,#,&! ∙ ∆&,&!
C",$,%!;+ ∙ 5

;
∆%,%!
E",$  

Sex-specific (x) transition matrix for 
growth from pre-molt 6> to post-molt 6, 
with 6 ≥ 6> 

D.2a 

:=,#,&! = X'∆&,&!
C",$,%!;+ ∙ 5

;
∆%,%!
E",$

&!
Y

;+

 
Normalization constant so  
1 ='Θ=,#,&,&!

&

 D.2b 

∆&,&!= 6 − 6> Actual growth increment D.2c 
Z=,#,&! = [6=̅,#,&! − 6

>\/R=,# Mean molt increment, scaled by R=,# D.2d 

6=̅,#,&! = 5-",$ ∙ 6>,",$ Mean size after molt, given pre-molt size 
6> D.2e 

 

In both approaches, the at,x, bt,x, and R=,# are arithmetic-scale parameters with imposed bounds. Θ=,#,&,&! is 
used to update the numbers-at-size for immature crab, #!,#,&, from pre-molt size 6> to post-molt size 6 
using: 



#!,#,&? ='Θ=,#,&,&! ∙ #!,#,&!
&!

 numbers at size of immature crab after 
growth D.3 

where y falls within time block t (see also Eq.s A1.4a-b and A2.2a-b). 

Priors using normal distributions are imposed on at,x and bt,x in TCSAM2013, with the values of the 
hyper-parameters hard-wired in the model code. While priors may be defined for the associated 
parameters here, these are identified by the user in the model input files and are not hard-wired in the 
model code. 

E. Model processes: maturity (terminal molt) 
Maturation of immature crab in TCSAM02 is based on a similar approach to that taken in TCSAM2013, 
except that the sex- and size-specific probabilities of terminal molt for immature crab, ^=,#,& (where size z 
is post-molt size), can vary by time block. After molting and growth, the numbers of (new shell) crab at 
post-molt size z remaining immature, #!,#,/00,F8,&? , and those maturing, ##,012,F8,&? , are given by: 

#!,#,/00,F8,&? = -1 − ^=,#,&. ∙ #!,#,/00,F8,&
#!,#,012,F8,&
? = ^=,#,& ∙ #!,#,/00,F8,&

 crab remaining immature 
crab maturing (terminal molt) 

E.1a 
E.1b 

where y falls in time block t and #!,#,/00,F8,& is the number of immature, new shell crab of sex x at post-
molt size z. 

The sex- and size-specific probabilities of terminal molt, ^=,#,&, are related to logit-scale model 
parameters 7=,#,&$-= by: 

^=,GH0,& = )
1

1 + 5I",&'(,%
)*" 6 ≤ 6=,GH0$-=

1 6 > 6=,GH0$-=
 female probabilities of maturing at 

post-molt size z E.2a 

^=,016H,& = )
1

1 + 5I",(+,',%
)*" 6 ≤ 6=,016H

$-=

1 6 > 6=,016H
$-=

 male probabilities of maturing at 
post-molt size z E.2b 

where the 6=,#$-= are constants specifying the minimum pre-molt size at which to assume all immature crab 
will mature upon molting. The 6=,#$-= are used here pedagogically; in actuality, the user specifies the 
number of logit-scale parameters to estimate (one per size bin starting with the first bin) for each sex, and 
this determines the 6=,#$-= used above. This parameterization is similar to that implemented in 
TCSAM2013 for the 2016 assessment model.  

Second difference penalties are applied to the parameter estimates in TCSAM2013’s objective function to 
promote relatively smooth changes in these parameters with size. Similar penalties (smoothness, non-
decreasing) can be applied in TCSAM02. 

F. Model processes: recruitment 
Recruitment in TCSAM02 consists of immature new shell crab entering the population at the end of the 
model year (June 30). Recruitment in TCSAM02 has a similar functional form to that used in 
TCSAM2013, except that the sex ratio at recruitment is not fixed at 1:1 and multiple time blocks can be 
specified. In TCSAM2013, two time blocks were defined: “historical” (model start to 1974) and “current” 
(1975-present), with “current” recruitment starting in the first year of NMFS survey data. In TCSAM02, 
recruitment in year y of immature new shell crab of sex x at size z is specified as 



`!,#,& = `̇! ∙ `̈!,# ∙ c̀!,& recruitment of immature, new shell crab 
by sex and size bin F.1 

where `̇! represents total recruitment in year y and `̈!,# represents the fraction of sex x crab recruiting, 
and c̀!,&is the size distribution of recruits, which is assumed identical for males and females. 

Total recruitment in year y, `̇!, is parameterized as 

`̇! = 5I6@J"?KJ",- E ∈ 8 total recruitment in year y F.2 

where y falls within time block t, 72#`= is the ln-scale mean recruitment parameter for t, and (`=,!is an 
element of a “devs” parameter vector for t (constrained such that the elements of the vector sum to zero 
over the time block). 

The fraction of crab recruiting as sex x in year y in time block t is parameterized using the logistic model 

`̈!,# = )
1

1 + 5I6L=J#"
e = !f2g

1 − `̈!,016H e = hg!f2g
E ∈ 8 sex-specific fraction recruiting in year y F.3 

where 72i8`e= is a logit-scale parameter determining the sex ratio in time block t. 

The size distribution for recruits in time block t, c̀=,&, is assumed to be a gamma distribution and is 
parameterized as  

c̀=,& = :;+ ∙ ∆&
C"
E"
;+
∙ 5

;∆%E"  size distribution of recruiting crab  F.4 

:= ='∆&
C"
E"
;+
∙ 5

;∆%E"

&

 normalization constant so that 1 = ∑ c̀=,&&  F.5 

∆&= 6 + (6/2 − 6$(@ offset from minimum size bin F.6 

Z= = 5I6@J-" gamma distribution location parameter F.7 

R= = 5I6@J," gamma distribution shape parameter F.8 

where 72#`l= and 72#`m= are the ln-scale location and shape parameters and the constant (6 is the size 
bin spacing. 

A final time-blocked parameter, pLnRCVt, is associated with the recruitment process representing the ln-
scale coefficient of variation (cv) in recruitment variability in time block t. These parameters are used to 
apply priors on the recruitment “devs” in the model likelihood function. 

G. Selectivity and retention functions 
Selectivity and retention functions in TCSAM02 are specified independently from the fisheries and 
surveys to which they are subsequently applied. This allows a single selectivity function to be “shared” 
among multiple fisheries and/or surveys, as well as among multiple time block/sex/maturity state/shell 
condition categories, if so desired. 

Currently, the following functions are available for use as selectivity or retention curves in a model: 



n& = o1 + 5;E∙(&;&./)p
;+ standard logistic G.1 

n& = o1 + 5;E∙(&;PQR(S@T./))p
;+

 
logistic w/ alternative 
parameterization G.2 

n& = =1 + 5
;UV	(+9)∙(&;&./)∆&0.1./q

;+

 
logistic w/ alternative 
parameterization G.3 
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logistic w/ alternative 
parameterization G.4 
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logistic w/ alternative 
parameterization G.5 
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 double logistic G.6 
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1
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parameterization G.8 
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+,-	(./∆!!(%"&"#))

∙ 1
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'ℎ%)%	+123 = [exp	(12+423) + exp012∆+4((2"23)4 + exp	(12∆+1((2"23))]
 double logistic with alt. 

parameterization G.9 

n& =
1

1 + 5;E*∙(&;&*./)
∙

1
1 + 5E;∙(&;[&*./?PQR(S@T;./1*./)])

 double logistic with alt. 
parameterization G.10 

A double normal selectivity function (requiring 6 parameters to specify) has also been implemented as an 
alternative to the double logistic functions. In the above functions, all symbols (e.g., R, 6Z', ∆69Z;Z') 
represent parameter values, except “z” which represents crab size.  

Selectivity parameters are defined independently of the functions themselves, and subsequently assigned. 
It is thus possible to “share” parameters across multiple functions. The “parameters” used in selectivity 
functions are further divided into mean parameters across a time block and annual deviations within a 
time block. To accommodate the 6-parameter double normal equation, six “mean” parameter sets (pS1, 
pS2,…, pS6) and six associated sets of “devs” parameter vectors (pDevsS1, pDevsS2,…, pDevsS6) are 
defined to specify the parameterization of individual selectivity/retention functions. Thus, for example, 
6Z' in eq. F1 is actually expressed as 6Z',! =	6Z̅' +	(6Z',! in terms of model parameters pS1 and 
pDevsS1y, where 6Z̅' = 7n1 is the mean size-at-50%-selected over the time period and (6Z',! =
7r5s9n1! is the annual deviation. 

Finally, three different options to normalize individual selectivity curves are provided: 1) no 
normalization, 2) specifying a fully-selected size, and 3) re-scaling such that the maximum value of the 



re-scaled function is 1. A normalization option must be specified in the model input files for each defined 
selectivity/retention curve. 

H. Fisheries 
Unlike TCSAM2013, which explicitly models 4 fisheries that catch Tanner crab (one as a directed 
fishery, three as bycatch), there is no constraint in TCSAM02 on the number of fisheries that can be 
incorporated in the model. All fisheries are modeled as “pulse” fisheries occurring at the same time. 

TCSAM02 uses the Gmacs approach to modeling fishing mortality (also implemented in TCSAM2013). 
The total (retained + discards) fishing mortality rate, h[,!,#,$,%,&, in fishery f during year y on crab in state 
x, m, s, and z (i.e., sex, maturity state, shell condition, and size) is related to the associated fishery capture 
rate ^[,!,#,$,%,& by 

h[,!,#,$,%,& = tℎ[,= ∙ -1 − u[,!,#,$,%,&. + u[,!,#,$,%,&v ∙ ^[,!,#,$,%,& fishing mortality rate H.1 

where ℎ[,= is the handling (discard) mortality for fishery f in time block t (which includes year y) and 
u[,!,#,$,%,& is the fraction of crabs in state x, m, s, z that were caught and retained (i.e., the retention 
function). The retention function is assumed to be identically 0 for females in a directed fishery and for 
both sexes in a bycatch fishery.  

In TCSAM2013, the same retention function (in each of two time blocks) was applied to male crab 
regardless of maturity state or shell condition. Additionally, full retention of large males was assumed, 
such that the retention function essentially reached 1 at large sizes. In TCSAM02, different retention 
functions can be applied based on maturity state and/or shell condition, and “max retention” is now an 
(potentially) estimable logit-scale parameter. Thus, in TCSAM02, the retention function u[,!,#,$,%,& is 
given by 

u[,!,#,$,%,& =
1

1 + 5\<,",$,),= ∙ [̀,!,#,$,%,& retention function H.2 

where f corresponds to the directed fishery, y is in time block t, x=MALE, u[,=,#,$,% is the corresponding 
logit-scale “max retention” parameter, and [̀,!,#,$,%,& is the associated selectivity/retention curve. 

If ny,x,m,s,z is the number of crab classified as x, m, s, z in year y just prior to the prosecution of the 
fisheries, then 

:[,!,#,$,%,& =
^[,!,#,$,%,&
h!,#,$,%,&2 ∙ w1 − 5;G-,$,),=,%>

x ∙ #!,#,$,%,& number of crab 
captured H.3 

is the number of crab classified in that state that were captured by fishery f, where h!,#,$,%,&2 =
∑ h[,!,#,$,%,&[  represents the total (across all fisheries) fishing mortality on those crab. The number of crab 
retained in fishery f classified as x, m, s, z in year y is given by 

4[,!,#,$,%,& =
u[,!,#,$,%,& ∙ ^[,!,#,$,%,&

h!,#,$,%,&2 ∙ w1 − 5;G-,$,),=,%>
x ∙ #!,#,$,%,& number of 

retained crab H.4 

while the number of discarded crab, ;[,!,#,$,%,&, is given by 



;[,!,#,$,%,& =
-1 − u[,!,#,$,%,&. ∙ ^[,!,#,$,%,&

h!,#,$,%,&2 ∙ w1 − 5;G-,$,),=,%>
x ∙ #!,#,$,%,& number of 

discarded crab H.5 

and the discard mortality, ;y[,!,#,$,%,&, is  

;y[,!,#,$,%,& =
ℎ[,! ∙ -1 − u[,!,#,$,%,&. ∙ ^[,!,#,$,%,&

h!,#,$,%,&2 ∙ w1 − 5;G-,$,),=,%>
x ∙ #!,#,$,%,& 

discard 
mortality 
(numbers) 

H.6 

 

The capture rate ^[,!,#,$,%,& (not the fishing mortality rate h[,!,#,$,%,&) is modeled as a function separable 
into separate year and size components such that 

^[,!,#,$,%,& = ^[,!,#,$,% ∙ n[,!,#,$,%,& fishing capture 
rate H.7 

where ^[,!,#,$,% is the fully-selected capture rate in year y and n[,!,#,$,%,& is the size-specific selectivity. 

The fully-selected capture rate ^[,!,#,$,% for y in time block t is parameterized in the following manner: 

^[,!,#,$,% = exp	-"#z{{{{{[,=,#,$,% + 7r5s9z[,!,#,$,%. H.8 

where the 7r5s9z[,!,#,$,% are elements for year y in time block t of a “devs” vectors representing annual 
variations from the ln-scale mean fully-selected capture rate "#z{{{{{[,=,#,$,%. The latter is expressed in terms 
of model parameters as  

"#z{{{{{[,=,#,$,% = 72#z[,=,#,$,% +' (z[,=,#,$,%
(

)

(*+
 H.9 

where the 72#z[,=,#,$,% is the mean ln-scale capture rate (e.g., for mature males) and the (z[,=,#,$,%(  are ln-
scale offsets. 

I. Surveys 
If ny,x,m,s,z is the number of crab classified as x, m, s, z in year y just prior to the prosecution of a survey, 
then the survey abundance, l],!,#,$,%,&, of crab classified in that state by survey v is given by 

l],!,#,$,%,& = |],!,#,$,%,& ∙ #!,#,$,%,& survey abundance I.1 

where |],!,#,$,%,& is the size-specific survey catchability on this component of the population.  

The survey catchability |],!,#,$,%,& is decomposed in the usual fashion into separate time block and size 
components such that, for y in time block t: 

|],!,#,$,%,& = |],=,#,$,% ∙ n],=,#,$,%,& ∙ f],=,#,$,%,& survey catchability I.2 

where |],=,#,$,% is the fully-selected catchability in time block t, n],=,#,$,%,& is the size-specific survey 
selectivity, and f],=,#,$,%,& is the size-specific availability of the population to the survey. If the survey 
covers the complete stock area (as the standard NMFS EBS bottom trawl is assumed to do for Tanner 



crab), then f],=,#,$,%,& ≡ 1. However, if the survey does not cover the complete stock, as is the case with 
the BSFRF/NMFS side-by-side catchability studies, then f],=,#,$,%,& needs to be estimated or assumed. 

The fully-selected catchability |],=,#,$,% is parameterized in a fashion similar to that for fully-selected 
fishery capture rates (except that annual “devs” are not included) in the following manner: 

|],=,#,$,% = exp	 ~72#�],=,#,$,% +' (�],=,#,$,%(
)

(*+
Ä I.3 

where the 72#�],=,#,$,% is the mean ln-scale catchability (e.g., for mature males) and the (�],=,#,$,%(  are ln-
scale offsets. 

J. Model fitting: objective function equations 
The TCSAM02 model is fit by minimizing an objective function, ℴ, with additive components consisting 
of: 1) negative log-likelihood functions based on specified prior probability distributions associated with 
user-specified model parameters, and 2) several negative log-likelihood functions based on input data 
components, of the form: 

ℴ = −2'ÇI ∙ ln-℘I.
I

− 2'ÇS ∙ ln	(ℒS)
S

 model objective function  J.1 

where ℘I represents the pth prior probability function, ℒS represents the lth likelihood function, and the 
Ç’s represent user-adjustable weights for each component. 

Prior Probability Functions 
Prior probability functions can be associated with each model parameter or parameter vector by the user 
in the model input files (see Section L below for examples on specifying priors). 

Likelihood Functions 
The likelihood components included in the model’s objective function are based on normalized size 
frequencies and time series of abundance or biomass from fishery or survey data. Survey data optionally 
consists of abundance and/or biomass time series for males, females, and/or all crab (with associated 
survey cv’s), as well as size frequencies by sex, maturity state, and shell condition. Fishery data consists 
of similar data types for optional retained, discard, and total catch components. 

Size frequency components 
Likelihood components involving size frequencies can be fitted using a multinomial or Dirchlet-
Multinomial likelihood (Thorson et al. 2019). The multinomial likelihood is: 

ln(ℒ) ='#!,^ ∙'o7!,^,&_,% ∙ ln-7!,^,&$_` + (. − 7!,^,&_,% ∙ ln-7!,^,&_,% + (.p
&!

 multinomial 
log-likelihood  J.2a 

where the y’s are years for which data exists, “c” indicates the population component classifiers (i.e., sex, 
maturity state, shell condition) the size frequency refers to, #!,^ is the classifier-specific effective sample 
size for year y, 7!,^,&_,%  is the observed size composition in size bin z (i.e., the size frequency normalized to 
sum to 1 across size bins for each year), 7!,^,&$_` is the corresponding model-estimated size composition, 
and ( is a small constant.  



The Dirichlet-Multinomial likelihood, applied to a single size composition with sample size nt, observed 
proportions áà= , and predicted proportions á=, is  

 

multinomial 
log-likelihood  J.2b 

where â is an estimated parameter related to the effective sample size. 

The manner in which the observed and estimated size frequencies for each data component are aggregated 
(e.g., over shell condition) prior to normalization is specified by the user in the model input files. Data can 
be entered in input files at less-aggregated levels of than will be used in the model; it will be aggregated 
in the model to the requested level before fitting occurs.  

Aggregated abundance/biomass components 
Likelihood components involving aggregated (over size, at least) abundance and or biomass time series 
can be computed using one of three potential likelihood functions: the normal, the lognormal, and the 
“norm2”. The likelihood function used for each data component is user-specified in the model input files. 

The ln-scale normal likelihood function is 

ln(ℒF)^ = −
1
2
'ä

[l!,^_,% − l!,^$_`\
<

ã!,^<
å

!

 normal log-
likelihood J.3 

where l!,^_,% is the observed abundance/biomass value in year y for aggregation level c, l!,^$_` is the 
associated model estimate, and ã!,^<  is the variance associated with the observation.  

The ln-scale lognormal likelihood function is  

ln(ℒ6F)^ = −
1
2
'ä

["#-l!,^_,% + (. − "#-l!,^$_` + (.\
<

ã!,^<
å

!

 lognormal log-
likelihood J.4 

where l!,^_,% is the observed abundance/biomass value in year y for aggregation level c, l!,^$_` is the 
associated model estimate, and ã!,^<  is the ln-scale variance associated with the observation. 

For consistency with TCSAM2013, a third type, the “norm2”, may also be specified 

ln(ℒF<)# = −
1
2
'[l!,#_,% − l!,#$_`\

<

!

 “norm2” log-likelihood  J.5 

This is equivalent to specifying a normal log-likelihood with ã!,#< ≡ 1.0. This is the standard likelihood 
function applied in TCSAM2013 to fishery catch time series. 

Growth data 
Growth (molt increment) data can be fit as part of a TCSAM02 model. Multiple datasets can be fit at the 
same time. The likelihood for each dataset (L`) is based on the same gamma distribution used in the 
growth model: 



L` = −'"# =ΓN
6̃( − 6!̅?,#?,&?

R!?,#?
Sq

(∈`

 gamma log-likelihood  J.6 

where 6( and 6̃( are the pre-molt and post-molt sizes for individual i (of sex xi collected in year yi) in 
dataset d, respectively, 6!̅?,#?,&? is the predicted mean post-molt size for individual i, and R!?,#? is the scale 
factor for the gamma distribution corresponding to individual i. 

Maturity ogive data 
Annual maturity ogive data, the observed proportions-at-size of mature crab in a given year, can also be 
fit as part of a TCSAM02 model. This data consists of proportions of mature crab observed within a size 
bin, as well as the total number of observations for that size bin. The proportions are assumed to represent 
the fraction of new shell mature crab (i.e., having gone through terminal molt within the previous growth 
season) to all new shell crab within the size bin in that year. Multiple datasets can be fit at the same time. 
The likelihood for each observation is based on a binomial distribution with sample size equal to the 
number of observations within the corresponding size bin, so the likelihood for each dataset (L$) is given 
by: 

L$ ='#!,& ∙ o7!,&_,% ∙ ln-7!,&$_` + (. + -1 − 7!,&_,%. ∙ ln-1 − 7!,&$_` + (.p
!,&

 binomial log-
likelihood  J.7 

where y is a year, z is a size bin, #!,& is the total number of classified crab in size bin z in year y, 7!,&_,% is 
the observed ratio of mature, new shell males to total new shell males in size bin z in year y, 7!,&_,% is the 
corresponding model-predicted ratio, and ( is a small constant to prevent trying to calculate ln(0). 

Effort data 
In both TCSAM2013 and TCSAM02, fishery-specific effort data is used to predict annual fully-selected 
fishery capture rates for Tanner crab bycatch in the snow crab and Bristol Bay red king crab fisheries in 
the period before at-sea observer data is available (i.e., prior to 1991), based on the assumed relationship 

h[,! = |[ ∙ g[,! 

where h[,! is the fully-selected capture rate in fishery f in year y, |[ is the estimated catchability in fishery 
f, and g[,! is the reported annual, fishery-specific effort (in pots). In TCAM2013, the fishery q’s are 
estimated directly from the ratio of fishery mean F to mean E over the time period (tf) when at-sea 
observer data is available from which to estimate the h[,!’s as parameters: 

|[ =
∑ G<,--∈"<
∑ H<,--∈"<

. 

Note that, in this formulation, the fishery q’s are not parameters (i.e., estimated via maximizing the 
likelihood) in the model. In TCSAM2013, the time period over which q is estimated for each fishery is 
hard-wired. This approach is also available as an option in TCSAM02, although different time periods for 
the averaging can be specified in the model options file. 

A second approach to effort extrapolation in which the fishery q’s are fully-fledged parameters estimated 
as part of maximizing the likelihood is provided in TCSAM02 as an option, as well. In this case, the 



effort data is assumed to have a lognormal error distribution and the following negative log-likelihood 
components are included in the overall model objective function: 

2[ =	'
~ln-g[,! + (. − ln ~

h[,!
|[

+ (ÄÄ
<

2 ∙ ã[
<

!

 

where ã[< is the assumed ln-scale variance associated with the effort data and ( is a small value so that the 
arguments of the ln functions do not go to zero.  

Aggregation fitting levels 
A number of different ways to aggregate input data and model estimates prior to fitting likelihood 
functions have been implemented in TCSAM02. These include:  

 

where x, m, s refer to sex, maturity state and shell condition and missing levels are aggregated over. For 
size compositions that are “extended by” x, m, s, or {x, m}, this involves appending the size compositions 
corresponding to each combination of “extended by” factor levels, renormalizing the extended 
composition to sum to 1, and then fitting the extended composition using a multinomial likelihood.  

K. Devs vectors 
For TCSAM02 to accommodate arbitrary numbers of fisheries and time blocks, it is necessary to be able 
to define arbitrary numbers of “devs” vectors. This is currently not possible using the ADMB C++ 
libraries, so TCSAM02 uses an alternative implementation of devs vectors from that implemented in 
ADMB. For the 2017 assessment, an n-element “devs” vector was implemented using an n-element 
bounded parameter vector. with the final element of the “devs” vector defined as −∑ s(@;+ , where s( was 
the ith value of the parameter (or devs) vector, so that the sum over all elements of the devs vector was 
identically 0. Penalties were placed on the final element of the devs vector to ensure it was bounded in the 
same manner as the parameter vector. However, this approach was problematic when initializing the 
model with the values for the n-1 elements that defined the n-element devs vector, the value of the n-th 
element (−∑ s(@;+ ) was not guaranteed to satisfy the bounds placed on the vector. Thus, this approach 
was revised to allow specification of all n element values (the s@ = −∑ s(@;+  constraint was removed) 
while the likelihood penalty was changed to penalize the sum of the elements being non-zero. The new 

Abundance/Biomass
by by extended by

total total x
x x, m

x, mature only x --
x, m m
x, s s

x, m, s x, m --
s

x, s
x, m, s

Size Conpositions



approach also has the advantage that it more closely follows the one used in ADMB to define “devs” 
vectors. Test runs with both approaches showed no effect on convergence to the MLE solution. 

L. Priors for model parameters 
A prior probability distribution can be specified for any element of model parameter. The following 
distributions are available for use as priors: 

indicator parameters constants description 
none none none no prior applied 
ar1_normal %, ã none random walk with normal deviates 
cauchy e', ë none Cauchy pdf 
chisquare í none ì< pdf 
constant min, max none uniform pdf 
exponential Ç none exponential pdf 
gamma 4, % none gamma pdf 
invchisquare í none inverse ì< pdf 
invgamma 4, % none inverse gamma pdf 
invgaussian %, Ç none inverse Gaussian pdf 
lognormal median, CV none lognormal pdf 
logscale_normal median, CV none normal pdf on ln-scale 
normal %, ã none normal pdf 
scaled_invchisquare í, 9 none inverse ì< scaled pdf 
scaledCV_invchisquare í, zî none inverse ì< pdf, scaled by CV 
t í none t distribution 
truncated_normal %, ã min, max truncated normal pdf 

 

M. Parameters and other information determined outside the model 
Several nominal model parameters are not estimated in the model, rather they are fixed to values 
determined outside the model. These include Tanner crab handling mortality rates for discards in the crab 
fisheries (32.1%), the groundfish trawl fisheries (80%), and the groundfish pot fisheries (50%), as well 
the base rate for natural mortality (0.23 yr-1). Sex- and maturity-state-specific parameters for individual 
weight-at-size have also been determined outside the model, based on fits to data collected on the NMFS 
EBS bottom trawl survey (Daly et al., 2016). Weight-at-size, wx,m,z, is given by 

?#,$,& = l#,$ ∙ 6,$,) 

where 

sex maturity state ïb,c ñb,c 
male all states 0.000270 3.022134 

female immature 0.000562 2.816928 
mature 0.000441 2.898686 

and size is in mm CW and weight is in kg. 



N. OFL calculations and stock status determination 
Overfishing level (OFL) calculations and 
stock status determination for Tanner crab are 
based on Tier 3 considerations for crab stocks 
as defined by the North Pacific Fishery 
Management Council (NPFMC; NPFMC 
2016). Tier 3 considerations require life 
history information such as natural mortality 
rates,  growth, and maturity but use proxies 
based on a spawner-per-recruit approach for 
FMSY, BMSY, and MSY because there is no 
reliable stock-recruit relationship. 
Equilibrium recruitment is assumed to be 
equal to the average recruitment over a selected time period (1982-present for Tanner crab). For Tier 3 
stocks, the proxy for BMSY is defined as 35% of longterm (equilibrium) mature male biomass (MMB) for 
the unfished stock (B0). The proxy FMSY for Tier 3 stocks is then the directed fishing mortality rate that 
results in B35% (i.e., F35%), while the MSY proxy is the longterm total (retained plus discard) catch 
mortality resulting from fishing at FMSY. The OFL calculation for the upcoming year is based on a sloping 
harvest control rule for FOFL (Fig. 2), the directed fishing mortality rate that results in the OFL. If the 
“current” MMB (projected to Feb. 15 of the upcoming year under the FOFL) is above BMSY (B35%), then 
FOFL=FMSY=F35%. If the current MMB is between R ∙ ó08d and BMSY, then FOFL is determined from the 
slope of the control rule. In either of these cases, the OFL is simply the projected total catch mortality 
under directed fishing at FOFL. If current MMB is less than R ∙ ó08d, then no directed fishing is allowed 
(FOFL=0) and the OFL is set to provide for stock rebuilding with bycatch in non-directed fisheries. Note 
that if current MMB is less than BMSY, then the process of determining FOFL is generally an iterative one. 

Stock status is determined by comparing “current” MMB with the Minimum Stock Size Threshold 
(MSST), which is defined as 0.5xBMSY: if “current” MMB is below the MSST, then the stock is 
overfished—otherwise, it is not overfished. 

N.1 Equilibrium conditions 
Both OFL calculations and stock status determination utilize equilibrium considerations, both equilibrium 
under unfished conditions (to determine B0  and B35%) and under fished conditions (to determine F35%). 
For Tier 3 stocks, because there is no reliable stock-recruit relationship, analytical solutions can be found 
for equilibrium conditions for any fishing mortality conditions. These solutions are described below (the 
notation differs somewhat from that used in previous sections). 

N.1.1 Population states 
The Tanner crab population on July 1 can be characterized by abundance-at-size in four population states: 

in– immature new shell crab 
io– immature old shell crab 
mn – mature new shell crab 
mo – mature old shell crab 

where each of these states represents a vector of abundance-at-size (i.e., a vector subscripted by size).  

 
Fig. 2. The FOFL harvest control rule. 



N.1.2 Population processes 
The following processes then describe the dynamics of the population over a year: 

S1 – survival from start of year to time of molting/growth of immature crab, possibly including 
fishing mortality (a diagonal matrix) 

S2 – survival after time of molting/growth of immature crab to end of year, possibly including 
fishing mortality (a diagonal matrix) 

Φ – probability of an immature crab molting (pr(molt|z), where z is pre-molt size; a diagonal 
matrix) (pr(molt|z) is assumed to be 1 in TCSAM02). 

Θ – probability that a molt was terminal (pr(molt to maturity|z, molt), where z is post-molt size; a 
diagonal matrix) 

T – size transition matrix (a non-diagonal matrix) 
1 – identity matrix 
R –number of recruits by size (a vector) 

The matrices above are doubly–subscripted, and R is singly-subscripted, by size. Additionally, the 
matrices above (except for the identity matrix) can also be subscripted by population state (in, io, mn, mo) 
for generality. For example, survival of immature crab may differ between those that molted and those 
that skipped.  

N.1.3 Population dynamics  
The following equations then describe the development of the population from the beginning of one year 
to the beginning of the next: 

/#? = ` + n<(@ ∙ {(1 − Θ(@) ∙ ö(@ ∙ Φ(@ ∙ n+(@ ∙ /# + ö(_ ∙ (1 − Θ(_) ∙ Φ(_ ∙ n+(_ ∙ /3}  (N.1) 
/3? = n<(_ ∙ {(1 − Φ(@) ∙ n+(@ ∙ /# + (1 − Φ(_) ∙ n+(_ ∙ /3} (N.2) 
y#? = n<$@ ∙ {Θ(@ ∙ ö(@ ∙ Φ(@ ∙ n+(@ ∙ /# + Θ(_ ∙ ö(_ ∙ Φ(_ ∙ n+(_ ∙ /3}  (N.3) 
y3? = n<$_ ∙ {n+$@ ∙ y# + n+$_ ∙ y3}  (N.4) 

where “+” indicates year+1 and all recruits (R) are assumed to be new shell.  

N.1.4 Equilibrium equations 
The equations reflecting equilibrium conditions (i.e., /#? = /#, etc.) are simply: 

/# = ` + n<(@ ∙ {(1 − Θ(@) ∙ ö(@ ∙ Φ(@ ∙ n+(@ ∙ /# + (1 − Θ(_) ∙ ö(_ ∙ Φ(_ ∙ n+(_ ∙ /3}  (N.5) 
/3 = n<(_ ∙ {(1 − Φ(@) ∙ n+(@ ∙ /# + (1 − Φ(_) ∙ n+(_ ∙ /3} (N.6) 
y# = n<$@ ∙ {Θ(@ ∙ ö(@ ∙ Φ(@ ∙ n+(@ ∙ /# + Θ(_ ∙ ö(_ ∙ Φ(_ ∙ n+(_ ∙ /3}  (N.7) 
y3 = n<$_ ∙ {n+$@ ∙ y# + n+$_ ∙ y3} (N.8) 

where R above is now the equilibrium (longterm average) number of recruits-at-size vector. 

N.1.5 Equilibrium solution 
The equilibrium solution can be obtained by rewriting the above equilibrium equations as: 

/# = ` + f ∙ /# + ó ∙ /3 (N.9) 
/3 = z ∙ /# + r ∙ /3  (N.10) 
y# = g ∙ /# + h ∙ /3   (N.11) 
y3 = ú ∙ y# + ù ∙ y3  (N.12) 

where A, B, C, D, E, F, G, and H are square matrices. Solving for io in terms of in in eq. 10, one obtains 



/3 = {1 − r};+ ∙ z ∙ /# (N.13) 

Plugging eq. 13 into 9 and solving for in yields 

/# = {1 − f − ó ∙ [1 − r];+ ∙ z};+ ∙ ` (N.14) 

Equations 13 for io and 14 for in can simply be plugged into eq. 11 to yield mn:  

y# = g ∙ /# + h ∙ /3  (N.15) 

while eq. 12 can then be solved for mo, yielding: 

y3 = {1 − ù};+ ∙ ú ∙ y#  (N.16) 

where (for completeness): 

f = n<(@ ∙ (1 − Θ(@) ∙ ö(@ ∙ Φ(@ ∙ n+(@  (N.17) 
ó = n<(@ ∙ (1 − Θ(_) ∙ ö(_ ∙ Φ(_ ∙ n+(_  (N.18) 
z = n<(_ ∙ (1 − Φ(@) ∙ n+(@  (N.19) 
r = n<(_ ∙ (1 − Φ(_) ∙ n+(_  (N.20) 
g = n<$@ ∙ Θ(@ ∙ ö(@ ∙ Φ(@ ∙ n+(@  (N.21) 
h = n<$@ ∙ Θ(_ ∙ ö(_ ∙ Φ(_ ∙ n+(_  (N.22) 
ú = n<$_ ∙ n+$@  (N.23) 
ù = n<$_ ∙ n+$_  (N.24) 

Note that Θ, the size-specific conditional probability of a molt being the terminal molt-to-maturity, is 
defined above on the basis of post-molt, not pre-molt, size. This implies that whether or not a molt is 
terminal depends on the size a crab grows into, not the size it at which it molted. An alternative approach 
would be to assume that the conditional probability of terminal molt is determined by pre-molt size. This 
would result in an alternative set of equations, but these can be easily obtained from the ones above by 
simply reversing the order of the terms involving T and Θ (e.g., the term (1 − Θ(@) ∙ ö(@ becomes ö(@ ∙
(1 − Θ(@)). 

N.2 OFL calculations 
The OFL calculations, which are iterative in nature, are now (2021) formulated in terms of automatically-
differentiated (AD) variables. The ability to conduct automatic differentiation is maintained by fixing the 
number of iterations conducted to a fixed number (typically 5). They are only done after model 
convergence or when evaluating an MCMC chain. The steps involved in calculating the OFL are outlined 
as follows: 

1. The population numbers-at-sex/maturity state/shell condition/size at the start of the upcoming 
year are used as initial conditions. 

2. Mean recruitment is estimated over a pre-determined time frame (currently 1982-present). 
3. Population rates in the final year are used for the upcoming year. 
4. The average selectivity and retention functions for all fisheries over the most recent 5-year period 

are calculated. 
5. The average maximum capture rates for all fisheries over the most recent 5-year period are 

determined.  
6. Using the equilibrium equations, B0 for unfished stock (B35% = 0.35*B0) is calculated. 



7. Using the equilibrium equations, the maximum capture rate for males in the directed fishery is 
iterated on a fixed number of steps to find the one (F35%) that results in the equilibrium MMB = 
B35%. 

8. The “current” MMB under directed fishing at F=F35% is calculated by projecting the initial 
population from 1) to Feb. 15. 

a. If current MMB > B35%, FOFL = F35%. The associated total catch mortality is OFL. 
b. Otherwise 

i. the directed F is set based on the harvest control rule and the ratio of the 
calculated current MMB to B35% 

ii. the current MMB is recalculated 
iii. iterate i-iii a fixed number of times such that current MMB doesn’t change 

between iterations (note that actual convergence of the iteration must be 
evaluated independently). Then heG6 = h	(< hfZ%) and the OFL is the 
associated total (retained plus discard) catch mortality. 
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