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Executive Summary 
The GOA pollock assessment model structure has remained unchanged since 2019 when model 19.1 was 
adopted for management. The model fits the data well and has no major pressing issues. This year, a suite 
of updates based on based on PT and SSC suggestions were explored. Out of these, three minor 
alternative models related to small structural changes were deemed worthy of consideration and are put 
forth for consideration. They include (1) adding a consistent penalty for all recruitment deviations; (2) 
removing the prior on the NMFS BT catchability; and (3) Adding a more flexible form for fishery 
selectivity to remove persistent patterns in age 3 and 4 age composition residuals.  

Table 1. Comparison of model alternatives for the 2021 assessment model. 

Model name  Model Description 
2022 

ABC (t) 
2022 

OFL (t) 
2022 

SSB (t) 
2021 

SSB (t) 
Rel Error 

2022 ABC 
19.1  2021 final (base)  133,081 154,983 186,481 195,758 0.0% 

19.1a Add σR=1.3 137,004 159,587 190,808 199,588 2.9% 
19.1b No BT Q prior 141,230 164,325 204,529 215,550 6.1% 
19.1c Update fishery selex 127,870 149,272 179,463 188,040 -3.9% 

 

The authors recommend models 19.1a and 19.1c, and leave 19.b up to the discretion of the Plan 
Team. 

Several research track models are presented as well, but are not ready to put forth for consideration in 
2022.  

Proposed models 

Model 19.1a: Adding consistent recruitment deviation penalty 
In December 2021 the SSC noted “… that recruitment deviations in the GOA pollock assessment are 
unconstrained except for the terminal two years, and suggests that exploring a moderate constraint on 
recruitment deviations in all years, as is commonly applied in other assessments, may be warranted. At a 
minimum, this would allow an assessment of the sensitivity of results to only constraining the last two 
years.” 

Model 19.1 has a penalty of σR=1 on the first eight, and last two recruitment deviations. All other 
deviations are unpenalized and thus freely estimated. This generally does not cause any optimization 
convergence issues for maximum likelihood estimation, but does for integration via MCMC. The 
perennial question is what value to use for the penalty. Instead of continuing with the arbitrary value of 1, 
the WHAM assessment model (Stock and Miller 2021) was used to estimate this penalty (process error). 
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This model, using the Laplace approximation of the marginal likelihood, estimated that 
𝜎𝜎𝑅𝑅~𝑁𝑁(1.34,0.14), significantly higher than the existing value of 1.0.  

Consequently, a value of σR=1.3 was applied to all recruitment deviations in model 19.1a. This resulted in 
small differences except in the smallest deviations which were shrank toward the prior (hyperdistribution) 
as expected (Fig. 1). Interestingly, the smallest deviations (e.g., 2016) were well outside the expected 
range of the prior but resisted, indicating strong information in the prior that the cohort was 
extraordinarily small. Because these changes affect primarily only very small cohorts, there was a minor 
difference in recruitment and SSB (Fig. 2), and overall a 2.9% difference in 2022 ABC (Table 1).  

 
Figure 1. Estimated (log) recruitment deviations for the base and alternative models (colors), with points and bars showing the 
mean and 95% confidence interval. The prior for the alternative model (σR=1.3) is shown on the right in green. 

 

 
Figure 2. Annual spawning stock biomass and recruitment estimates (lines) and their uncertainty (ribbons). 

Recommendation 
Model 19.1a is very similar to the base model, only shrinking some of the smallest cohorts closer to the 
average, but provides several key advantages. First, it brings the model in line with what is done in most 
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other stock assessments. Second, it has improved statistical interpretation because the deviations in log 
space can be interpreted as process errors. This is advantageous when moving to a fully state-space 
approach where these will be integrated out and the process error estimated. Finally, it stabilizes Bayesian 
estimates when using MCMC because there are extremely long negative tails on the smallest cohorts and 
this can interfere with the integration algorithm. There appear to be no disadvantages to this change, and 
so the authors recommend this update to the model for 2022. 

Model 19.1b: Removing the prior on bottom trawl catchability 
In the 2021 SAFE (Monnahan et al. 2021), an analysis was done where successive surveys were dropped 
to explore their impact on the model. This identified that the NMFS bottom trawl (BT) survey had a large 
impact on the scale of the stock, and it was noted that this was constrained by a somewhat arbitrary, but 
informative, prior on the catchability for this survey. It was also noted at the Plan Team that there is a 
difference between dropping the whole survey vs dropping the prior, and so the Plan Team recommended 
“…the author further research [prior on BT q], including conducting a prior sensitivity analysis and 
potentially looking at applying priors (if available) for other surveys in the assessment.” 

The informative prior is implemented as log𝑞𝑞𝐵𝐵𝐵𝐵 ~𝑁𝑁(log(. 85) , 0.1) and was originally developed in 
collaboration with GAP staff (M. Dorn pers. comm.). Comparing the resulting estimates of the 
catchability demonstrates that the prior dominates the estimate, and without the prior there is vague 
information with a mean catchability of 0.75 (Fig. 3). 

 
Figure 3. Asymptotic normal distributions estimated for the log of BT catchability vs the prior (mean 0.85). The estimate with 
without it suggests a lower catchability (mean 0.75).   

 

The resulting estimated SSB have the same trend, but much higher without the BT data, and much closer 
to the base model when the prior is dropped (Fig. 4). 
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Figure 4. Spawning biomass estimates for models without the BT data or prior compared to the base model.    

The more notable difference is in the uncertainty estimates, which are substantially higher (Fig. 5). These 
differences highlight the impact of the prior to set the scale of the population. 

 
Figure 5. Spawning biomass estimates (lines) and confidence intervals (ribbons) for two modified versions (panels) against the base model 
(colors).  

The median CV for SSB in the base model is 0.144, for no BT prior (proposed model 19.1b) it is 0.276 (a 
92% increase), and without any BT data it is 0.363. 

Model 19.1b proposes to remove the prior and estimate it freely. The previous analyses demonstrate this 
for the 2021 model, but the estimate of catchability may not be stable over time, especially as it interacts 
with time-varying catchabilities for the Shelikof acoustic and ADF&G bottom trawl surveys. This could 
be a concern if the estimate varies widely annually, as it could drive big changes in scale and potentially 
management advice. A retrospective analysis was thus done for 19.1b (10 peels), and estimates of 
catchability compared across years. The results were fairly stable from 2011 to 2015 at around 0.6, but 
then increased markedly, peaking in 2017 at 1.54 and slowly decreasing to 0.75 in 2021 (Fig. 6).  
 



5 

 

 
Figure 6. Estimated bottom trawl catchabilities from a retrospective analysis where successive years of data were peeled off to 
change to terminal year of the assessment. Estimates and 95% confidence intervals are shown. 

The 2016-2018 was the period with pronounced divergent trends between the BT and acoustic indices, 
which likely drives the change in estimates. This change in scale is also apparent in SSB for the 
retrospective analysis (Fig. 7). Both values for Mohn’s rho calculated with 10 peels are relatively small 
for the base model (0.056) and 19.1b (0.033), although the sensitivity of rho is more sensitive to the 
number of peels used in model 19.1b (results not shown).   

 
Figure 7. Changes in spawning biomass as a function of peels in a retrospective analysis for the base model and proposed 19.1b 
alternative. Mohn’s rho is 0.056 and 0.033, respectively, with the alternative model having a lower rho despite the larger 
fluctuations in scale.  

Recommendation 
The largest impacts from this change are increased uncertainty in the scale of the population, although the 
mean is fairly similar. This uncertainty likely more accurately reflects the information content in the data, 
and that is likely the only advantage. The disadvantage will be that the scale will be more sensitive in 
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future assessments, especially when there are conflicts in scale (catchability) with other surveys. The BT 
prior serves to stabilize the scale of the model, and thus management advice, which could be seen as an 
advantage. The authors defer to the Plan Team for recommendation. 

Model 19.1c: Adding flexibility to fishery selectivity 
The GOA Plan Team in its November 2019 minutes recommended the author examine fishery selectivity, 
as persistent patterns in the catch-at-age residuals may represent artifacts of the selectivity functional 
form used. 

The base fisheries selectivity is double-logistic with time-varying ascending slope and inflection point. 
Plan Team discussions highlighted the persistent patterns predominantly in the age 4 fish, where long 
runs of negative and positive Pearson residuals were observed. Monnahan et al. (2021) explored 
increasing the process error for the ascending inflection point, but found it had no meaningful impact. 
This suggests that there is something fundamentally limiting by the ascending portion of the selectivity 
curve. It seems unlikely another parametric form, like the double-normal, would avoid this limitation.  

Instead, an unusual but parsimonious approach was taken instead. A single fixed effect representing a 
constant offset (in logit space) from the parametric curve for age 4 fish was estimated. This allows the 
time-varying parametric curve more freedom to fit to ages 3 and 5, while only using a single additional 
parameter. Specifically, if we let sel(a) be the parametric selectivity curve at age a determined by the 
parameters, then this value is updated given the new unbounded parameter 4θ  as follows: 

 4sel(4)=inv.logit(logit(sel(4)) )θ+   (0.1) 

Where the function y=logit( ) log( ) log(1 )x x x= − − and inv.logit is the inverse of this function, namely 
1/ (1 exp( ))x y= + − . This series of transformations keeps the selectivity within the range of (0,1), no 

matter the value for the offset.  Also note that a value of 4 0θ = reverts to the parametric form. 

The model estimates 4 0.985θ = − (CI: -1.47– -0.5), resulting in a lower value of age 4 selectivity across 
the time series, which causes a slight increase for age 3 (Fig. 8). 
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Figure 8. Estimates and confidence intervals (lines and ribbons) for annual fishery selectivity for two ages (panels) and two 
model versions (colors).  

However, due to the time-varying nature of the ascending logistic, the new estimates can be higher or 
lower than the base model (Fig. 9). 

 
Figure 9. Example selectivity curves for four arbitrary years (panels) for the two model alternatives (colors).  

This added flexibility reduces the patterns in age 3 and age 4 residuals (Fig. 10). 
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Figure 10. Pearson residuals for the base and alternative models (panels). Blue (negative) and red (positive) represent the sign of 
the residual while the size reflects the magnitude (range given in upper corner). The red boxes highlight the ages expected to be 
improved. 

This approach adds a single fixed effect (the offset), but reduces the total negative log-likelihood by 8 
units, suggesting a substantial improvement to the fits to data. The resulting SSB estimates are very 
similar (Fig. 11). 
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Figure 11. Estimates and uncertainties in SSB (lines and ribbons) between the base model and alternative 19.1c which has 
additional flexibility in ages 3-5 (colors).  

Ages >8 also exhibit patterns of runs that are unlikely due to chance. Several approaches were explored to 
determine what kind of additional flexibility would be needed to eliminate those patterns. These include 
an offset on age 9 and adding time-variation to the descending portion of the parametric curve. Neither of 
these had a meaningful impact on the estimates (results not shown), but did demonstrate that to fit the 
data well the model needs to have close to constant selectivity for age 9, but very large variation in age 
10. Thus, another alternative was explored that kept the parametric form identical for ages <= 9, but 
added a random-walk in logit space for age 10. The assumed process error was increased until the residual 
pattern visually improved. 

This parameterization was able to improve the residual patterns (Fig. 12), however the resulting estimates 
for age 9 and 10 selectivity were highly variable (Fig. 13). 
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Figure 12. Pearson residuals for the base and alternative models (panels). Blue (negative) and red (positive) represent the sign of 
the residual while the size reflects the magnitude (range given in upper corner). The red boxes highlight the ages expected to be 
improved. The alternative model here is an experiment with a random-walk on selectivity at age 10 directly.  

 
Figure 13. Estimates and uncertainties (points and ribbons) of age 9 and 10 selectivity when a random-walk process was used for 
age 10 instead of the parametric curve. 
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This alternative had little effect on SSB, except for a much wider confidence interval for the early years 
when the random-walk process was highly uncertain due to limited data to inform it (Fig. 14). 

 
Figure 14. Estimates and uncertainties in SSB (lines and ribbons) between the base model and alternative 19.1c which has 
additional flexibility in ages 3-5 (colors), plus a non-parametric form for age 10.  

Recommendation  
It seems clear that the parametric form of the double-logistic is not sufficiently flexible for this stock, as 
there is too much fluctuation between some adjacent ages (3 vs 4, and 9 vs 10) over time to be captured 
even with very flexible time-varying parameterizations. Consequently, other parametric forms also seem 
unlikely to be able to capture this variation. The offset for age 4 approach was parsimonious (a single 
parameter), visually improved the residuals, and decreased the total NLL by 8 units. It thus seems a 
worthwhile addition to the model. In contrast, the complexity needed to reduce the patterns in age 9 and 
10 fish were not parsimonious and resulted in highly uncertain estimates of selectivity for those ages. The 
authors thus define model 19.1c as one that includes an offset to age 4, but no other changes, and 
recommend that for 2022. 

 

Updating the area apportionment calculations 
The December 2021 the “SSC suggests simplifying the computations in the Appendix to reflect the new 
season structure to the extent possible, without changing the underlying methodology. For example, it 
appears that seasons B1 & B2 (formerly C & D) could be combined as they use the same apportionment 
scheme.” 

The apportionment table will be simplified where possible to reflect the new seasonal structure. 
Note that this new structure was not supposed to change apportionment, and that motivates the current 
table which calculates by the previous four seasons and then sums them together into the new seasons. 

A separate issue with winter apportionment is the lack of consistent acoustic surveys in areas outside of 
Shelikof. The average of the last 3-4 surveys are used for the current year. In some areas the surveys use 
averages that include data as far back as 2013 (Chirikof and Mozhovoi). An alternative way of getting an 
estimate of the biomass in each area is to fit a time-series model to the data and use the estimate from this. 
As proof of concept, an AR(1) time-series model was coded in Template Model Builder (Kristensen et al. 
2016). This model fits to data from the 7 areas jointly, estimating a shared correlation parameter. Each 
area is assumed to start at its individual mean (Fig. 15).  
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Figure 15. AR(1) time-series estimates (solid line) with 95% confidence intervals (dashed lines) to data (points) from the winter 
spawning areas surveyed by MACE (panels). Time and logistical constraints preclude consistent sampling, and the model 
estimates are proposed as an alternative for the winter apportionment calculations. The time-series are projected into the future to 
demonstrate the behavior in the absence of data (reversion to mean). 

There are several advantages worth highlighting. First, uncertainty in the area apportionment can be 
calculated (via the delta method) and this could be used to help prioritize which areas to survey in 
subsequent years to minimize this uncertainty. This will likely depend on complex, interacting factors like 
absolute biomasses, recent trends, and the number of recent surveys per area. Second, as years without 
data accumulate, the model will naturally revert to the estimated mean of the time-series, which arguably 
is a better estimate to use than an average of old data. Finally, this model assumes stationarity which may 
not be true in the face of climate change. But the current approach also does not account for that, as old 
data will not necessary reflect the current biomass. 

During the pandemic most of these areas were not surveyed due to logistical challenges, and future 
reductions in survey effort may continue this trend. The authors therefore pose this time-series 
approach as a more robust alternative to winter apportionment in the face of limited data. 

The 2022 SAFE will also include a second appendix table showing apportionment for the subsequent year 
as well. This was requested by Obren Davis. 
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Models under development 

Re-evaluating the SE stock distinction 
Finally, the SSC encourages the authors and GOA GPT to re-evaluate whether assessing Southeast 
Alaska walleye pollock as a separate stock is justified or whether the available data support a single, 
gulf-wide stock assessment. This evaluation may also benefit from considering recent studies on the 
genetic structure of walleye pollock across Alaska and the North Pacific 

Recent genetic studies have not conclusively identified the stock substructure sufficiently to justify 
changing to a gulf-wide assessment. Samples from the SE GOA were recently taken and analyses are 
underway, but the AFSC genetics team needs more time to complete them (I. Spies pers. comm. Sep ‘22). 
This issue will be revisited once those analyses are completed. 

Updating structure of catchability for the Shelikof acoustic survey 
In December 2021 the SSC highlighted the need to examine how catchability for the winter Shelikof 
acoustic survey.  

The SSC supports future research to identify the optimal level of constraint on among-year variation in 
Shelikof Survey catchability (q), including the potential to estimate the process error variance internally 
within the assessment model.  

The SSC reiterates its recommendation from December 2020 to explore the use of covariates related to 
the timing of the survey to inform survey catchability in the Shelikof Strait survey. For example, the 
difference in timing between peak spawning and mean survey date or, alternatively, the proportion of 
mature fish in the survey, are likely to inform time-varying catchability in the survey. 

Currently the winter Shelikof acoustic survey catchability is modeled as a random walk with assumed 
process error. The original logic was that some of the stock spawned outside of Shelikof Strait and thus 
were unavailable to the survey. Fish tended to spawn in other areas with some consistency, so a random 
walk on catchability was implemented to account for variation in spatial availability. Several overlapping 
efforts were done to explore alternative catchability structures. None of these are proposed for 2022, but 
are summarized here for Plan Team feedback. 

First, the ADMB model is unable to estimate the magnitude of the process error used in the random-walk 
process using penalized maximum likelihood. Instead, this parameter was estimated in two ways: 
integration with Markov chain Monte Carlo (MCMC) and using marginal maximum likelihood via TMB 
in the WHAM model. 

Estimating the process errors directly 
MCMC has a long history of implementation in hierarchical (random effects) models, and in particular 
the Hamiltonian Monte Carlo family of algorithms is well-suited to such models (Betancourt and 
Girolami 2015, Monnahan et al. 2017). The no-U-turn sampler (NUTS) algorithm is implemented in 
ADMB via the ‘adnuts’ R package (Monnahan and Kristensen 2018) and thus the base model, and 
provides a promising path for full integration of random effects and their variances. The primary 
challenge is obtaining a good dense mass matrix (a tuning parameter of NUTS). Typically this is the 
estimated covariance (in unbounded space), but with process errors the model was not estimable and thus 
no covariance matrix available. Instead, the following procedure was used: 
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1. Put very tight normal priors at a relatively high value on the process errors (sigma) and estimate 
model and covariance matrix. This gets covariances for all fixed effects and approximate ones for 
the random effects (albeit restricted), while also containing elements for sigma.  

2. Take the temporary priors off in the TPL and recompile, but do not re-estimate the model.  

3. Read in the original covariance matrix from file, and modify the matrix rows/cols to have 
marginal elements of 1 and zeroes elsewhere.  

4. Run the sample_nuts function with metric=cov.new as typically done. This will write the 
modified covariance matrix to file and use that for sampling. 

This procedure is relatively straightforward to implement, and R code is available upon request. Before 
applying it to both time-varying catchabilities (the ADF&G survey as well), several small 
parameterization issues were solved (not shown). Then, 5 NUTS chains with 2000 iterations (250 
warmup) were run in parallel, initiating from the mode. The chains took 13 minutes to run and passed all 
convergence checks with enough effective samples for inference.  

These results were compared to a bridged version of the assessment in the WHAM modeling framework, 
the same one above used to estimate σR. The two ways of estimating these process errors were very 
similar (Fig. 16) and substantially larger than the assumed value in the base model. This demonstrates that 
process errors are estimable in ADMB models using MCMC.  

 
Figure 16. Estimates of the random-walk process errors in the model for the Shelikof survey (q1, left panel) and ADF&G (q3, 
right panel). Bayesian posteriors are compared to marginal maximum likelihood estimates from WHAM. The value assumed in 
the base model is shown as dashed vertical line. 

Despite the much larger process errors (and flexibility in catchabilities; Fig. 17) the spawning stock 
biomass is relatively unchanged (Fig. 18). 
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Figure 17. Estimates and uncertainties (lines and ribbons) for catchabilities using two approaches to estimating the process errors 
(colors). 

 
Figure 18. Estimates and uncertainties in SSB (lines and ribbons) between the base model and one with the process errors 
estimated via MCMC.  

Incorporating timing covariates 
The second approach investigated is whether the timing of the winter Shelikof survey relative to peak 
spawning can help explain some variation in catchability. The driving hypothesis is that if the survey is 
too early or too late then the spawning fish will not have arrived or have already left, thus reducing 
temporal availability. Incorporating these covariates measuring this timing mismatch would therefore be 
able to better fit the Shelikof index. Two timing metrics are used: (1) ‘Fem30p’ is the proportion of 
female fish over 30cm that were in a spawning or spent stage and (2) ‘mismatch’ uses the estimated 
spawning dates from larval surveys to calculate the relative temporal lag between the Shelikof survey and 
inferred timing of peak spawning. This work is lead, and has been presented previously by, Dr. Lauren 
Rogers. The advances this year were to incorporate the spawn timing mismatch covariates into a 
WHAM model and explicitly test this hypothesis in a more robust statistical framework.  
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WHAM allows fitting a time-series smoother to the covariates jointly with the model, and then uses the 
expected values (instead of the raw data) in the relationship with catchability (Stock and Miller 2021). 
This approach thus allows fitting noisy time-series or ones with missing values. Catchability was modeled 
as linear on the log scale: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑞𝑞𝑦𝑦) = 𝜇𝜇 + 𝜏𝜏𝑦𝑦 + 𝛽𝛽1𝐸𝐸𝑦𝑦+. . . +𝛽𝛽𝑛𝑛𝐸𝐸𝑛𝑛𝑦𝑦 

where 𝜇𝜇 is a global intercept, 𝜏𝜏 the annual random walk process, and 𝛽𝛽𝑖𝑖 the estimated fixed effect 
coefficient for the ith term of a polynomial against the environmental covariate 𝐸𝐸𝑦𝑦𝑖𝑖 . Here the focus was on 
each of the two timing covariates at a time and only explore a linear effect. The random-walk component, 
ostensibly attempting to control for spatial variance in availability, can also be left in or taken out. Thus, 
three versions of the model were fit to each covariate: just the random-walk (RW), just the covariate 
(Cov) and both components simultaneously (RW+Cov).  

The models with just the covariates were also able to capture a large amount of the variation in 
catchability (Fig. 19). But the models that included both components were selected by AIC, and there was 
a 56.3% and 74.1% reduction in random-walk process variance w/ added covariate (Table 2). This was 
not true for white noise covariates (results not shown). Together, this suggests there is statistical evidence 
for a signal in the timing covariates and the random-walk component, and there is a clear improvement to 
the fit to the data (Fig. 20). 

 

Table 2. Results for the two timing covariates. For the ‘RW’ models, the covariate time-series smoothers 
were fit internally but not linked so that AIC is comparable.  
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Figure 19. Catchability esitmates (lines) and uncertainties (ribbons) for models with the covariate and with and without the 
random-walk process (panels) for the two timing covariates (colors). 

 

 
Figure 20. Expected Shelikof indices by model (color) and the data (points and vertical lines). The two timing covariate models 
are the best-fitting versions that also include the random-walk process. 

Despite the differences, there was little change in the estimated SSB between the two covariates 
for the selected models (Fig. 21). 
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Figure 21. Estimates of spawning biomass (t) for three different catchability structures (panels) and two timing covariates 
(colors). These estimates differ from the base model because the WHAM version is missing important features (e.g., BT prior, 
ageing error matrices). 

It is not possible to directly compare SSB estimate to the base model because some features used in 
ADMB are not possible in WHAM and so they are not comparable. Despite this, some preliminary 
conclusions can be made in order to stimulate discussion from the Plan Team. 

• WHAM provides a powerful framework to explore covariate linkages to key parameters, and here 
it was clear there was a signal in both timing covariates.  

• Both the smoother and covariate were significant, and the covariate reduced the process variance 
substantially. It is hypothesized that WHAM has thus partitioned the variability in catchability 
into spatial (RW) and temporal components (Cov). 

• A random-walk only model can achieve the same fit, but requires a higher process error and thus 
uses more DF, and has no mechanism. 

• This approach could be incorporated into the ADMB production assessment but would not be 
straightforward. 

The authors consider this an exciting and potentially very valuable result for the assessment. But for now, 
this research is ongoing and is expected to be published in 2023.  
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