Bristol Bay red king crab

Final SAFE
September 2022
K.J. Palof and M.S.M. Siddeek

ADF\&G
katie.palof@alaska.gov

Summary

- Mature male biomass increase from 2021, still low compared to long term average
- Directed fishery was closed in 2021/22 season due to low mature female abundance.
- Estimated mature female biomass is higher than 2021 but still lower than it's been since the mid-90s
- 2022 mature female abundance does NOT meet the minimum threshold of mature female abundance (8.4 million) in the State Harvest Strategy
- 2022 area-swept $=8.004$
- 2022 model estimate $=7.840$
- Low recruitment in recent years (last 8-12 years), projected decline in biomass without a large recruitment event

CPT / SSC comments

- No new comments addressed this cycle
- Many addressed in May 2022, work will be continued for 2023 proposed model work
- Focus here on models recommended for specification in May 2022
- June 2022 comments:
- Produce a stock structure template for RKC (June 2023)
- CPT develop guidelines for when to change model start date (Jan 2023?)

Data by type and year

Data extent and new data for 2022

Retained and bycatch mortality (t)

Survey legal male abundance and CPUE for directed BBRKC fishery

Model explorations

21.1b: model 21.1 (2021 accepted model - base M for males fixed at 0.18 , mortality event in 80s)

+ GMACS updated version (version 2.01.E)
+ updated groundfish fisheries bycatch data.
22.0: model $21.1 \mathrm{~b}+$ starting in 1985.
22.0a: model 22.0 (start in 1985) + estimating a constant M for males.

Residuals of total NMFS survey biomass

Mature male biomass

Mortality
biomass (equal to catch biomass times handling mortality rate)

Table 7. Natural mortality estimates for three model scenarios during different year blocks

Model	Sex	$1985-2022$	$1980-1984$	$1985-2022$
21.1 b	Males	0.180	0.886	
	Females	0.238	1.174	
22.0	Males			0.180
	Females		0.232	
22.0 a	Males			0.228
	Females		0.261	

Molting probabilities

Size composition fit

- Similar for all models in bycatch and directed fisheries
- Survey selectivities are similar also (see next two slides)

Gear $=$ NMFS Trawl, Sex $=$ Female, Season $=1$

Gear $=$ NMFS Trawl, Sex $=$ Male, Season $=1$

Comparison of residuals for NMFS survey males

Model 21.1b, Survey Males

160	
140	
$\begin{aligned} & \stackrel{5}{0}_{120}^{\stackrel{1}{0}} \\ & \hline-1 \end{aligned}$	
100	
80	
	1980 1990 2000

Model 22.0, Survey Males

Model 22.0a, Survey Males

Comparison of residuals for NMFS survey females

${ }^{1980}$
$80 \quad 1990 \quad \begin{gathered}2000 \\ \end{gathered}$
2010

Model 22.0, Survey Females

Model 22.0a, Survey Females

$\mathrm{clr} \times<0 \quad>0$

Recruitment

Recruitment to exclude from reference point calculations

Highlighted cells show prior density values and total negative likelihood values without prior densities

| Model | $\underline{\mathrm{b}}$ | $\underline{21.1 \mathrm{~b}}$ | $\underline{22.0}$ | $\underline{22.0 \mathrm{a}}$ |
| :--- | ---: | ---: | ---: | ---: | | $22.0 \mathrm{a}-22.0$ |
| :--- |
| Pot-ret-catch |

Retrospective analysis and projections

- Retrospective analysis - done for all model runs
- MCMC runs to look at model variability
- Only performed for model 21.1b (base/reference model)
- Time intensive - feasibility of this for all model runs?
- Projections
- To inform population trajectory and the probability of "approaching an overfished condition"

Retrospective patterns

Model 21.1b

Model 22.0

Model 22.0a

Cumulative probabilities of estimated ratios of MMB in 2022 to corresponding estimated $B_{35 \%}$ values under model 21.1 b with the MCMC approach.

Model 21.1b

Projections for future status (21.1b MCMC output)
[2022 = projected MMB Feb $15^{\text {th }}$, 2023] Model 21.1b

$\begin{array}{lllllllll}2022 & 2023 & 2024 & 2025 & 2026 & 2027 & 2028 & 2029 & 2030 \\ \text { Year } & 2031 & 2032\end{array}$

Fishing mortality
F=0
$F=0.083$
$\mathrm{F}=0.167$
$\mathrm{F}=0.25$

Last 6 years of size compositions NMFS survey data

Summary \& Recommendations

- Models have similar output, some differences in model 22.0a due to estimated base M value for males
- Trend in mature male biomass similar except for terminal year for model 22.0a (not recommended for status determination, more investigation into changes in model output needed)
- Stock is not overfished in 2022 and not likely "approaching an overfished condition" in the next two years
- Recommend reference (base) model 21.1b for status determination
- Model 22.0 is a potential transition but need a unified (for all stocks) approach to a starting date for models/data (SSC recommendation)

Status and catch specifications ($1,000 \mathrm{t}$) (model 21.1b):

Year	MSST	Biomass $($ MMB	TAC	Retained Catch	Total Catch	OFL	ABC
$2018 / 19$	10.62^{B}	16.92^{B}	1.95	2.03	2.65	5.34	4.27
$2019 / 20$	12.72^{C}	14.24^{C}	1.72	1.78	2.22	3.40	2.72
$2020 / 21$	12.12^{D}	13.96^{D}	1.20	1.26	1.57	2.14	1.61
$2021 / 22$	12.01	16.64	0	0.02	0.10	2.23	1.78
$2022 / 23$		16.95				3.04	2.43

Basis for the OFL: Values are in $1,000 \mathrm{t}$ (model 21.1b):

Year	Tier	BMSY	Current MMB	B/BMSY (MMB)	Fofl	Years to define BMSY	Natural Mortality
$2018 / 19$	3b	25.5	20.8	0.82	0.25	$1984-2017$	0.18
$2019 / 20$	$3 b$	21.2	16.0	0.75	0.22	$1984-2018$	0.18
$2020 / 21$	$3 b$	25.4	14.9	0.59	0.16	$1984-2019$	0.18
$2021 / 22$	$3 b$	24.2	14.9	0.62	0.17	$1984-2020$	0.18
$2022 / 23$	3b	24.03	17.0	0.71	0.20	$1984-2021$	0.18

Buffer considerations

- Current at 20\% - recommend 20\% for upcoming year
- Cold pool distributional shifts
- Declining trend or low levels of mature male biomass and mature female biomass
- Lack of recruitment events
- Retrospective pattern

