Scallop Assessment Development

Scallop Plan Team, Mar. 5, 2024 Tyler Jackson

History

 Bechtol (2000) and Zhang (2014) explored a bespoke age structured model for Kamishak

- Zheng (2018), Jackson and Zheng (2022), Jackson (2023) explored age structured models in Stock Synthesis
 - Extended efforts to Kodiak Shelikof District

Roadblocks

- Model development is slow (~ 1-2 months / year on scallop models)
- Can only be extended to areas where data are sufficient ~80% of harvested stock
- Knowledge of spatiotemporal life history variation is limited
 - Potential for spending a lot of time chasing district-specific model misspecifications
- Question at 2023 SSC Meeting Why are we doing this?

Re-examine Assessment Needs

- Population appears somewhat stable
- ADF&G management decisions could be considered conservative on average
- Low(er) socioeconomic impact
 - Currently 2 vessels, 1-2 ports of delivery, onboard processing
 - Lower priority for analytical & research support
- Do we need the full range of management advice offered by an age-structured model?
 - Probably not

2022 SPT - "The Team recommended Tyler explore more data-limited options as an intermediate step to an integrated age and size-structured assessment that can be applied more broadly in a shorter time frame."

7 registration areas, more within

Fishery Dependent Data

- High quality observer data for all districts since 2009, except area H
 - 1993 2008 data are 'available' but require attention
- Includes:
 - CPUE (round and meat)
 - Weight-at-size
 - Size Composition
 - Age Composition (2015 2023)
 - Discards
- Fishing becoming more irregular west of Kodiak

Fishery Independent Data

- Dredge surveys
 - 2016 present in YAK, EKI, WKI, KNE, KSH, and KAM
 - Kamishak dredge surveys go back to mid-90s

Fishery Independent Data

- Dredge surveys
 - 2016 present in YAK, EKI, WKI, KNE, KSH, and KAM
 - Kamishak dredge surveys go back to mid-90s
 - Data include:
 - Abundance / Biomass (round and meat)
 - Density
 - Size and Age Composition
 - Weight-at-size/age
 - Maturity?
- Cam sled surveys would need to investigate

Stock Data Disparity

- Non-core fishing areas will likely never have a survey, and will always have limited observer data
- Cannot apply survey knowledge to unsurveyed areas different ecosystem
- How to improve assessment given disparity in data?
 - Split into "core" and "non-core" areas
 - YAK, EKI, WKI, KSH, and KNE have full suite of available data (these areas are ~ 80% of landings)
 - H*, M, O, Q are truly data-limited (*in present day)

Example: Appendix B Draft Weathervane Scallop Assessment using a Combination of Data-Limited Harvest Control Rules

Objective:

- Explore simple modelling approach for surveyed, 'core' area
- 2) Provide <u>example</u> of how output would inform a stockwide harvest control rule
 - Approach not yet ready for prime time

Survey Data

- Survey round biomass estimates from 2016 2023 by district (YAK and EKI combined)
- Exploited (≥ 100 mm SH) biomass used as proxy for mature biomass
- District biomass is sum of beds
 - Removed EK1 (2016), KSH2 and KSH3, and KNE4 (small, surveyed once)
 - Dredge efficiency of 0.83 applied (Gustafson and Goldman 2012)
 - Filled in estimates for a few beds

$$\ln(B_{t,j}) = Year_t + Bed_{b,j} + \epsilon$$

Survey Data

(tonnes)

Year	KSH	KNE^{a}	WKI	$\mathbf{YAK}^{b,c}$
2016	$1,082\ (0.13)$		$1,031 \ (0.38)$	
2017	870~(0.14)	635 (0.28)		$4,\!585~(0.15)$
2018	$1,\!234~(0.11)$			$6{,}002\ (0.12)$
2019			$865\ (0.37)$	$6,\!805~(0.1)$
2020	$3,\!655~(0.18)$	$1,\!192~(0.4)$		
2021			$1,244\ (0.3)$	$5{,}833~(0.2)$
2022	$4,524 \ (0.2)$	$2,\!657\ (0.46)$		
2023			992(0.3)	7,592 (0.19)
^a KNE				
^b YAK				
c YAK				

Fishery Data – CPUE Index

- Fishery CPUE index was standardized using GAM
 - Similar to Appendix C in 2023 SAFE, but uses GAM instead of GLM

Null Model $\ln(CPUE_i) = Year_{y,i}$

- Full scope included vessel, smoothed depth, dredge width, month, bed
- Forward and backward selection
 - CAIC > 2 / df lost and deviance explained > 0.01
- Standardized Index normalized to mean

K. Shelikof	Residual DF	AIC	\mathbf{R}^2
Form	$(\Delta \text{ DF})$	(ΔAIC)	$(\Delta \ R^2)$
Year + Month + Dredge Width + s(depth)	9,517.59	123,241	0.52
+ Vessel	-3.24	-103.69	0.007
+ Bed	-1.97	-31.65	0.003
K. Northeast	Residual DF	AIC	\mathbf{R}^2
Form	$(\Delta \text{ DF})$	$(\Delta \text{ AIC})$	$(\Delta \ \mathrm{R}^2)$
Year + Month + Dredge Width + s(depth) + Bed	$4,\!655.85$	$64,\!623$	0.47
+ Vessel	-3.02	12.02	0.002
West Kayak Is.	Residual DF	AIC	\mathbf{R}^2
Form	$(\Delta \text{ DF})$	(ΔAIC)	$(\Delta \ \mathrm{R}^2)$
Year	296	$4,\!439$	0.33
+ Dredge Width	-0.00	-0.00	0.000
+ s(depth)	-8.58	-7.12	0.128
+ Month	-0.00	-0.00	-0.000
+ Vessel	-0.00	-0.00	-0.000
Yakutat	Residual DF	AIC	\mathbf{R}^2
Form	$(\Delta \text{ DF})$	(ΔAIC)	(ΔR^2)
Year + Bed + Vessel + Dredge Width + s(depth)	$21,\!378.62$	288,325	0.25
+ Month	-5.96	-118.10	0.006

Partial Effects KNE

Partial Effects YAK

Modelling Approach: REMA (Sullivan et al. 2022)

 Consensus version of state space random walk model used for GPT assessments since 2013 and PIBKC

Survey Biomass State variable – Population biomass Observation Error $\ln(B_{t,j}) = \ln(\hat{B}_{t,j}) + \epsilon_{B_j} \qquad \epsilon_{B_j} \sim \mathcal{N}(0, \sigma_{ln(B_{t,j})}^2)$

Population biomass

Process error

 $\eta_{t,i} \sim \mathcal{N}(0, \sigma_{PE}^2)$

 $\ln(\hat{B}_{t,j}) = \ln(\hat{B}_{t-1,j}) + \eta_{t-1,j}$

Random walk process

Modelling Approach: REMA (Sullivan et al. 2022)

Extension to include fishery CPUE

Scaling Parameter

Modelling Approach: REMA (Sullivan et al. 2022)

Model scenarios:

- **24.0**: Base model, four strata (KSH, KNE, WKI, YAK), fishery CPUE, shared σ_{PE}^2 and σ_{τ}
- **24.1**: 24.0, with σ_{PE}^2 estimated by stratum and prior on σ_{PE}^2 for WKI ~ *N*(-1.64, 0.38)
- 24.2: 24.1, with emphasis 0.5 on index likelihood
- **24.3**: 24.2, with σ_{τ} estimated by stratum

BSAI Crab Tier 4 F_{OFL} Control Rule

$$F_{\rm OFL} = \begin{cases} 0 & \frac{B_{prj}}{B_{\rm MSY, \ proxy}} \le 0.25 \\ \frac{M(\frac{B_{prj}}{B_{\rm MSY, \ proxy}} - \alpha)}{1 - \alpha} & 0.25 < \frac{B_{prj}}{B_{\rm MSY, \ proxy}} \le 1 \\ M = 0.13 \ {\rm yr^1} ({\rm FMP}) & B_{prj} > B_{\rm MSY, \ proxy} \end{cases}$$

ForL- Control Rule

BSAI Crab Tier 4 F_{OFL} Control Rule

$$B_{prj} = \hat{B}e^{-M\tau_{sf}} - C_T \qquad \tau_{sf} = 0.504$$

 $B_{\text{MSY, proxy}}$ is the average biomass from 2009 - 2023

OFL Calculation (Example)

$$\mathrm{OFL}_s = \gamma B_{prj}(1-e^{-F_{\mathrm{OFL}}})$$

 $\gamma = 0.1$ (FMP)

$OFL = OFL_{s} + OFL_{ns}_{(\text{non-core})}$

OFL Calculation (Example)

(t)	Surveyed Stock					Non-Surveyed Stock		Total	
Model	\hat{B}_{2023}	B_{prj}	$B_{\rm MSY,\ proxy}$	$\frac{B_{prj}}{B_{\rm MSY, \ proxy}}$	$F_{\rm OFL}$	OFL_s	Ref. Period	OFL_{ns}	OFL
24.2	$13,\!529$	$11,\!138$	9,598	1.16	0.13	136	1990-97	156	292
							2009-23	27	163
$(mil\ lb)$		Surveyed Stock			Non-Surveyed Stock		Total		
Model	\hat{B}_{2023}	B_{prj}	$B_{\rm MSY,\ proxy}$	$\frac{B_{prj}}{B_{\rm MSY, \ proxy}}$	M	OFL_s	Ref. Period	OFL_{ns}	OFL
24.2	29.83	24.56	21.16	1.16	0.13	0.30	1990-97	0.34	0.64
							2009-23	0.06	0.36

Not an option for 2024/25

Issues

- Should be using survey mature biomass exploited biomass would be better suited for state harvest strategy
- Should revisit estimation of *M* (last by Kruse and Funk 1995)
- Estimating biomass outside the range of survey data ~ relying on assumption of q to be time invariant
- Only captures last 15 yrs, population fished since late 1980s
- Approach doesn't make use of catch or available composition data
- Need better informed target biomass (for core area)
- Need better informed reference time series for non-core area
- No harvest strategy to translate into GHLs, yet

Good things

- Makes use of fishery independent biomass estimates
- Makes use of fishery CPUE
- The end better justifies the means (REMA is not time intensive)
- REMA will compute apportionment by district (not shown)
- Using an average target biomass as done here is a reasonable benchmark for management of this stock
- Defining core and non-core areas is probably the only way to overcome the data-disparity in estimating stockwide biomass

I don't think this requires better knowledge of stock structure...

What's Next

- Fill in research holes
 - Maturity (Worton et al., *ongoing*)
 - Natural Mortality
 - Dredge efficiency?? (Byerly ongoing)
 - Data recovery
- Devise what a survey-based harvest strategy look like
- Explore other simple modelling approaches that make use of other ubiquitous data
 - Simplified stage structure?
- Better define reference periods

Questions ?