Sex- and maturity-specific species distribution modeling for eastern Bering Sea snow crab

Rebecca Howard¹, Mike Litzow², Lorenzo Ciannelli¹, & Emily Ryznar²

Contact: howardre@oregonstate.edu

¹College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR ²NOAA Fisheries, Alaska Fisheries Science Center, Kodiak, AK

Motivation for developing new SDMs

- Shifts northward seen for males, immature females in recent years.
- Could there be movement outside of the EBS survey area?
- Need for improvement of previous SDMs – past EFH maps not sex and size specific.
- Past maps also not developed using hindcasts to allow for short-term projections.

Research Questions

- How do environmental conditions, fishing pressure, disease, and predation affect snow crab sex- and maturity-specific distributions?
- 2. Does inclusion of anomalous years (e.g., 2018-2019) improve both overall predictions and spatial error?
- 3. How do models trained on survey temperature data perform compared to ROMS?

Data

- ► NOAA AFSC Bottom Trawl Survey
 - Crab catches by sex and maturity stage
 - Train: 1995-2014
 - Test: 2015-2021
 - Pacific cod abundance
 - Bitter crab syndrome (BCS) prevalence
 - Bottom temperature
 - Depth

Data

- ► NOAA AFSC Bottom Trawl Survey
 - Crab catches by sex and maturity stage
 - Train: 1995-2014
 - Test: 2015-2021
 - Pacific cod abundance
 - Bitter crab syndrome (BCS) prevalence
 - Bottom temperature
 - Depth
- Observer data from the directed fishery
- ▶ Sediment grain size (EBSSED-2)
- ► Sea ice concentration (ERA5)

Methods

Boosted regression trees (BRT)

- Selected after comparison with generalized additive models (GAMs).
- Two-part delta method due to zero-inflated data.
 - $_{\circ}$ Presence-absence model
 - Abundance model
- Hyperparameters tuned using a grid search for each component of model.

Methods

SHAP Values

- Explain the contribution of each covariate to a given prediction.
- Negative/positive <u>SHAP values</u> indicate a negative/positive effect on the <u>prediction</u>.
- Greater SHAP magnitude indicates a greater effect.
- Provides both mean effect and variation.
- Additive

How do environmental conditions, fishing pressure, disease, and predation affect snow crab sex- and maturity-specific distributions?

Sublegal Male Snow Crab

Spatial distributions differ by sex and maturity, which are likely explained by sexand maturity-specific variable importance.

Relative Influence

		100	10	10	
-	-				
0	0.2	0.4	0.6	0.8	1

Spatial distributions differ by sex and maturity, which are likely explained by sexand maturity-specific variable importance.

Relative Influence

0 0.2 0.4 0.6 0.8 1

Spatial distributions differ by sex and maturity, which are likely explained by sexand maturity-specific variable importance.

Relative Influence

0 0.2 0.4 0.6 0.8 1

There is a threshold effect of grain size for female crab, but in general all sexes and maturities prefer cool water and small sediment sizes.

Legal Male Crab 1.0 0.5 0.0 -0.5 -1.0 0 2 $\frac{4}{phi}$ 6

There is a threshold effect of grain size for female crab, but in general all sexes and maturities prefer cool water and small sediment sizes.

Low temperature has a negative effect on legal male crab abundance when combined with high ice concentrations – this is not seen for the other sex and maturity combinations.

Does training models with anomalous years improve predictive errors?

- Added 2018 to training data, removed from test.
- Calculated overall and spatial RMSE values for both sets of train/test data.
- Compared spatial errors visually and with percent change.

Does training models with anomalous years improve predictive errors?

- Added 2018 to training data, removed from test.
- Calculated overall and spatial RMSE values for both sets of train/test data.
- Compared spatial errors visually and with percent change.

How do models trained on survey temperature data perform compared to ROMS?

Ongoing work

- Remove cod, BCS prevalence, observer data from models.
- Use temperature output from the Bering10K ROMS hindcast and forecasts.

How do models trained on survey temperature data perform compared to ROMS?

Ongoing work

- Remove cod, BCS prevalence, observer data from models.
- Use temperature output from the Bering10K ROMS hindcast and forecasts.
- Compare models with ROMS temperatures to models with the previous season's temperatures.

Annual Temperature Change in the Bering Sea

Longitude

 Maturity/sex differences in distribution appear to be driven by different relationships with environment.

- Maturity/sex differences in distribution appear to be driven by different relationships with environment.
- Interactions between static and dynamic variables may prevent northward movement of snow crab.

- Maturity/sex differences in distribution appear to be driven by different relationships with environment.
- Interactions between static and dynamic variables may prevent northward movement of snow crab.
- Inclusion of anomalous years may have minimal impact on predictions.

- Maturity/sex differences in distribution appear to be driven by different relationships with environment.
- Interactions between static and dynamic variables may prevent northward movement of snow crab.
- Inclusion of anomalous years may have minimal impact on predictions.
- Ongoing work will determine if the Bering10K can be used to predict snow crab abundance for the next survey season.