

GOA Pollock

NOAA FISHERIES

Collaborators: Bridget Ferriss, Kalei Shotwell, Denise McKelvey, David McGowan Cole Monnahan, Grant Adams 2023 November Plan Team <u>cole.monnahan@noaa.gov</u> adamsqd@uw.edu

Author's 2023 ABC = 232,543 t

- Increase of 56% from 2023
- 2025 ABC decreases to 157,687 t
- No reduction from max ABC Changes to model:
 - No structural changes
 - Converted to TMB (23.0)

Concerns:

- Extremely small recent cohorts
- Poor fit to NMFS bottom trawl index

Positives:

- 2017, 2018, 2020 cohorts above average
- 2012 estimate up to ~50 billion
- Good environmental conditions

Gulf of Alaska pollock Overview of results

Model overview

- Single-sex, single single, ages 1-10+
- Empirical weight at age
 - No internal length dynamics, all age-based processes
 Length comps converted via specified matrices
- Fishery selectivity is time-varying double logistic
- Fitted to 4 surveys
 - NMFS winter (Shelikof) + summer (coast wide) acoustic
 - NMFS and ADF&G summer bottom traw
- Time-varying catchability for Shelikof and ADF&G
- σ_R=1.3 in 2022 but up to 1.8 this year
 Francis tuning used for compositional data

Catch history

- 2022 projected catch = 129,754 t
- 2022 realized catch = 132,698 t
- 2023 projected catch = 145,215 t

2022 fishery catch distribution

Fishery catch indicators

New data available in 2023

2023 was an "on" year in the GOA

- Winter acoustic survey (index and ages)
- Summer acoustic survey (index and lengths)
- NMFS bottom trawl survey (index)
- ADF&G bottom trawl index

Conflicting signs in the data

Shelikof (3+) 259 kt (<u>27% decrease</u> from 2022)

Summer acoustic 740 kt (<u>72% increase</u> from 2021)

NMFS bottom trawl 888 kt (<u>79% increase</u> from 2021)

ADF&G bottom trawl 102 kt (1% decrease from 2022) ADFG crab/groundfish survey

- NMFS bottom trawl west of 140W
- Shelikof Strait acoustic survey
- --- Summer gulfwide acoustic survey

These are the processed values used in the assessment

These are the raw survey estimates

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 8

Winter acoustic results

Shelikof down and no small fish

Chirikof and Marmot Bay are both up, but within historical norm

Biomass (thousand t)

Thanks to D. McKelvey

20

15

10

5

6

15

Numbers (million fish)

0

Summer acoustic results

NOAA FISHERIES

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 10

Summer acoustic results

Thanks to D. McGowan

NMFS bottom trawl results

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 12

Maturity: recent estimates

Estimated from Shelikof data. Data after 2003 use local abundance weighting.

NOAA FISHERIES

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 13

Spawning weight at age (WAA)

- WAA from Shelikof
 - survey
- Declined from 2012 to 2020
- Increasing again
- 5-year average used for projections

Fishery WAA

 Did the RE model accurately predict the 2022 fishery WAA last year?

• OK?

Key parameters estimated externally

- Natural mortality: age-specific
- Fishery WAA
 - Data used through 2022
 - A RE model used for 2023 and projections
- Spawning WAA
 - Annual data exclusively from Shelikof Strait
 5-year average for projections
- Population WAA
 - Projections use average of last 3 NMFS BT surveys
- Proportion mature at age
 - Long-term (1983-present) average used throughout

Parameters estimated internally

Number of parameters	Estimation details		
1	Estimated in log space		
Years 1970-2023 = 54	Estimated as log deviances from the log mean with all years constrained by random deviation process error of 1.3.		
Age-specific= 10	Not currently estimated in the model		
Years 1970-2023 = 54	Estimated as log deviances from the log mean		
4	Slope parameters estimated on a log scale, intercept parameters on an arithmetic scale		
2 * (No. years-1) = 108	Estimated as deviations from mean selectivity and constrained by random walk process error		
No. of surveys = 6	Catchabilities estimated on a log scale. Separate catchabilities were also estimated for age-1 and age-2 winter acoustic indices.		
2 * (No. years-1) = 108	Annual catchability for winter acoustic surveys and ADF&G surveys estimated as deviations from mean catchability and constrained by random walk process error		
8 (2 each for the Shelikof and			
summer acoustic surveys, and the NMFS and ADF&G BT surveys)	Slope parameters estimated on a log scale.		
123 estimated parameters $+216$ process errors $=339$			
	1 Years 1970-2023 = 54 Age-specific= 10 Years 1970-2023 = 54 4 2 * (No. years-1) = 108 No. of surveys = 6 2 * (No. years-1) = 108 8 (2 each for the Shelikof and summer acoustic surveys, and the NMFS and ADF&G BT surveys) 123 estimated parameters + 216		

Sequential addition of data

- Big increases with addition of NMFS BT and Shelikof data
- Moderate w/ summer AT
- Recent trend but also scale

Sequential addition of data

- Big increases with addition of NMFS BT and Shelikof data
- Moderate w/ summer AT
- Recent trend but also scale

Fishery selectivity: double logistic with time-varying ascending limb

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 20

Fishery fits

- Switched to OSA residuals for age comps
- Fishery patterns (ages 3 & 4) remain
- Resolved w/ nonparametric models (not put forward this year)

OSA Residuals for the Fishery w/o age=2

Shelikof fits

• No concerns

OSA Residuals for the Shelikof w/o age=3

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 22

NMFS BT fits

• No concerns

OSA Residuals for the NMFS BT w/o age=1

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 23

ADF&G bottom trawl fits

• Some large residuals and pattern of positive residuals

Summer acoustic fits

No concerns

-

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 25

Index fits

• Poor fits, wrong trends for key surveys

Index fits

- Record low age-1 estimate in 2023 fits poorly
- Will have to wait for corroboration from other data sets next year
- Although length data also imply few age 1s

Retrospective patterns

- Rho is expected to range from -0.2 to 0.3 by chance (based on bootstrapping)
- Thus rho=-0.3 this year is significant
- Uses 7 peels, previously used 10

Projections: an aside

- This year we noticed an issue in the projections
- 2023 SSB was 14% lower in "proj" than the assessment
- Why can't proj reproduce the assessment?
 - Input spawning WAA is different (2023 data vs 5-year average)
- Does that invalidate proj? No, because the 2024 initial NAA are almost identical in this case
 - Due to similar fishery selectivity and fishery WAA

• How to calculate SPR-based BRP under substantial variation?

Fishery selectivity function

- Problem: current selectivity results in persistent residual patterns in age comp data
 - Current approach: parametric double logistic w/ random effects
 - Alternative approach:
 - Non-parametric 2D AR(1) age, year
 - 3D AR(1) by age, year, cohort using conditional variance

Performance metrics

- 1. One-step-ahead composition residuals
 - a. Do the alternatives reduce residual patterns? <u>YES</u>
- 2. Marginal AIC
 - a. Do the alternatives result in better model fits? <u>YES</u>
- 3. Retrospective analysis (SSB)
 - a. Do the alternatives reduce model misspecification?i. Maybe?
- 4. Do projected selex curves outperform simple average?a. For the most part...

Retrospective SSB

3D-AR1 has lowest retrospective bias in SSB

Projection performance

- **Problem:** what selectivity to use for projections used to calculate reference points?
 - Current approach: 4 year average (e.g. 2019-2022 for 2023 assessment)
 - Alternative approach: use model based projections
 - Selectivity is likely more similar between year Y and Y-1 than Y and Y-5
 - Allows correlation structure to inform short-term projections (e.g. cohort, year, and age effects)

Projection performance

- Approach: retrospective skill testing of projected vs average agespecific selectivity
 - 7 peels
 - Age-data for terminal year not included (mimics data collection)
 - No adjustments to comp weights

Note: Model is slightly different assessment (estimates variance and doesn't estimate q-devs for years without data)

Retrospective analysis

- Projected selectivity in Y+1 from peeled model compared to estimated selectivity from "full model"
 - Calculate Mohn's Rho and Mean Squared Error
 - For selex and B0, B40, OFL, and ABC

$$RE_{age} = \sum_{p}^{N_{p}} \left(Sel_{M(y-p),age,y-p+1} - Sel_{M(y),age,y-p+1} \right) / Sel_{M(y),age,y-p+1} / N_{p}$$

$$MSE_{age} = \sum_{p}^{N_{p}} \left(Sel_{M(y-p),age,y-p+1} - Sel_{M(y),age,y-p+1} \right)^{2} / N_{p}$$

Retrospective bias <u>Selex</u>

- Projected selectivity reduces MSE and Mohn's Rho compared to using average selectivity
- 3D-AR1 has worse Mohn's Rho and MSE <u>for selex</u> than current approach

Model	Metric	Selex	Age-average	% Difference
1 (ParDev)	MSE	Avg	0.0022	
1	MSE	Proj	0.0021	95.45%
1	Rho	Avg	-0.0415	
1	Rho	Proj	-0.0165	39.76%
7 (2D-AR)	MSE	Avg	0.0033	
7	MSE	Proj	0.0028	84.85%
7	Rho	Avg	-0.0617	
7	Rho	Proj	-0.0513	83.14%
8 (3D-AR)	MSE	Avg	0.0099	
8	MSE	Proj	0.0068	68.69%
8	Rho	Avg	-0.0673	
8	Rho	Proj	-0.0494	73.40%

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 37

Retrospective bias <u>BRPs</u>

- For AR models projected selectivity reduces MSE and Mohn's Rho compared to using average selectivity
- 3D-AR1 has worse Mohn's Rho and MSE for OFL and <u>ABC</u> than current approach, but better for B0

Model	Metric	Selex	ABC	% Diff
1 (ParDev)	MSE	Avg	0.0064	
1	MSE	Proj	0.0066	102.83%
1	Rho	Avg	0.2507	
1	Rho	Proj	0.2490	99.33%
7 (2D-AR)	MSE	Avg	0.0062	
7	MSE	Proj	0.0062	98.56%
7	Rho	Avg	0.2534	
7	Rho	Proj	0.2492	98.35%
8 (3D-AR)	MSE	Avg	0.0077	
8	MSE	Proj	0.0070	91.91%
8	Rho	Avg	0.2866	
8	Rho	Proj	0.2678	93.45%

Overview

3D-AR1 may outperform current selectivity

- Reduces retrospective bias in SSB, B0, & B40 at cost of increased retrospective bias in selex, ABC, & OFL
- Projected selectivity outperforms average selectivity
- Projected selectivity decreases Mohn's Rho in selex, ABC, & OFL for all models
 - However increases MSE for double logistic

Next steps

- Rerun with different terminal years of the assessment
- Account for reweighting in retrospective peels
- Evaluate average vs projected weight-at-age
- Incorporate projected selex into assessment in 2024
- Any advice on how to structure these experiments?

Projections in 2023

- GOA pollock has substantial time-varying quantities (WAA, maturity)
- What to use for SPR?
- Can projections recreate 2023 assessment?
 - SSB, no 2024 NAA, yes

Projections in 2023

- GOA pollock has substantial time-varying quantities (WAA, maturity)
- What to use for SPR?
- Can projections recreate 2023 assessment?
 - SSB, no 2024 NAA, yes

	2020	2021	2022	2023
SPR (F=0)	0.076	0.076	0.076	0.080
Mean Recruits				
(billions)	5.858	5.656	6.139	6.295
B100	443,000	430,000	469,000	505,000
B40	177,000	172,000	188,000	202,000
Terminal SSB	184,000	197,000	243,000	342,000
Depletion	0.415	0.458	0.518	0.677
Projected maxABC				
for next year	105,722	133,081	148,937	232,543
Recruits in 2013				
(billion)	39.4887	40.4539	44.193	49

Status trends

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 43

Risk table: overview

Summary and ABC recommendation

Assessment-related considerations	Population dynamics considerations	Environmental/ecosystem considerations	Fishery Performance
Level 2: Major concern	Level 1: No concern	Level 1: No concern	Level 1: No concern

- Assessment concerns: poor fit to NMFS BT index, retrospective
- Population concerns: extreme low cohorts

Risk table: population dynamics concerns

A few vanishingly small recruits in recent years

- Are they real?
- Is that a regime shift?
- What does that mean for recruitment variability?

Risk table: population dynamics concerns

A few vanishingly small recruits in recent years

- Are they real?
- Is that a regime shift?
- What does that mean for recruitment variability?

Risk table: population dynamics concerns

A few vanishingly small recruits in recent years

- Are they real?
- Is that a regime shift?
- What does that mean for recruitment variability?

Risk table: assessment concerns

- The prior on NMFS BT catchability highly influences scale of stock
- But fits poorly in last 5 surveys
- Bad retrospective, but in the right direction

Results for GOA pollock in SE (Tier 5)

	As estimated or <i>specified last</i> year for:		As estimated or <i>recommended this</i> year for:	
Quantity/Status	2023	2024	2024	2025
Biomass (t)	50,505	50,505	43,328	43,328
Fofl	0.30	0.30	0.30	0.30
maxF _{ABC}	0.23	0.23	0.23	0.23
Fabc	0.23	0.23	0.23	0.23
OFL (t)	15,150	15,150	12,998	12,998
maxABC (t)	11,363	11,363	9,749	9,749
ABC (t)	11,363	11,363	9,749	9,749
	As determined <i>last</i> year for:		As determined this year for:	
Status	2022	2023	2023	2024
Overfishing	No	n/a	No	n/a

Questions?

• Thanks!

Author's 2023 ABC = 232,543 t

- Increase of 56% from 2023
- 2025 ABC decreases to 157,687 t
- No reduction from max ABC Changes to model:
 - No structural changes
 - Converted to TMB (23.0)

Concerns:

- Extremely small recent cohorts
- Poor fit to NMFS bottom trawl index

Positives:

- 2017, 2018, 2020 cohorts above average
- 2012 estimate up to ~50 billion
- Good environmental conditions

Gulf of Alaska pollock Overview of results

References

- Cheng, M. L. H., J. T. Thorson, J. N. Ianelli, and C. J. Cunningham. 2023. Unlocking the triad of age, year, and cohort effects for stock assessment: Demonstration of a computationally efficient and reproducible framework using weight-at-age. Fisheries Research 266:106755.
- Fisch, N., K. Shertzer, E. Camp, M. Maunder, and R. Ahrens. 2023. Process and sampling variance within fisheries stock assessment models: estimability, likelihood choice, and the consequences of incorrect specification. ICES Journal of Marine Science:fsad138.
- Kristensen, K., A. Nielsen, C. W. Berg, H. Skaug, and B. M. Bell. 2016. TMB: Automatic differentiation and Laplace approximation. Journal of Statistical Software 70:21.
- Maunder, M. N., and A. E. Punt. 2013. A review of integrated analysis in fisheries stock assessment. Fisheries Research 142:61-74.
- Monnahan, C. C., and K. Kristensen. 2018. No-U-turn sampling for fast Bayesian inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages. Plos One 13:e0197954.
- Nielsen, A., and C. W. Berg. 2014. Estimation of time-varying selectivity in stock assessments using state-space models. Fisheries Research 158:96-101.

References

- Punt, A. E. 2023. Those who fail to learn from history are condemned to repeat it: A perspective on current stock assessment good practices and the consequences of not following them. Fisheries Research 261:106642.
- Punt, A. E., F. Hurtado-Ferro, and A. R. Whitten. 2014. Model selection for selectivity in fisheries stock assessments. Fisheries Research 158:124-134.
- Stock, B. C., and T. J. Miller. 2021. The Woods Hole Assessment Model (WHAM): A general state-space assessment framework that incorporates time- and age-varying processes via random effects and links to environmental covariates. Fisheries Research 240:105967.
- Szuwalski, C. S., J. N. Ianelli, A. E. Punt, and H. e. J. J. Poos. 2017. Reducing retrospective patterns in stock assessment and impacts on management performance. ICES Journal of Marine Science 75:596-609.
- Trijoulet, V., C. M. Albertsen, K. Kristensen, C. M. Legault, T. J. Miller, and A. Nielsen. 2023. Model validation for compositional data in stock assessment models: Calculating residuals with correct properties. Fisheries Research 257:106487.
- Xu, H., J. T. Thorson, R. D. Methot, and I. G. Taylor. 2019. A new semi-parametric method for autocorrelated age- and timevarying selectivity in age-structured assessment models. Canadian Journal of Fisheries and Aquatic Sciences 76:268-285.

