Interim Report on the Halibut Deck Sorting EFP – October 2019

John Gauvin, Beth Concepcion, and Christopher Oliver Alaska Seafood Cooperative

Scope of the Report

- Covers deck sorting operations from January 20th through mid-September 2019 (roughly same timeframe covered in previous DS EFP reports)
- Provides performance metrics for 2019 and comparison to previous years (which had differing time frames, catch handling protocols, observer data collections methods and rules for deck sorting)

Rules of the 2019 EFP

- Vessel must have a NMFS-approved safety plan detailing potential hazards and appropriate deck access routes, and must brief the observers on this plan
- Observer must be present on deck whenever deck sorting occurs
- Vessel cannot run fish from stern tanks into factory while deck sorting, unless two observers are on duty
 - Vessel must use a visual signal on the flow scale conveyor to indicate when deck sorting is occurring
- Vessels have option of taking one or two extra observers (in addition to the normally required two)

Rules of the 2019 EFP

- Observer data collection on deck determines amount and mortality of deck sorted halibut
 - Stratified random sample of one-in-five halibut
- Observer species composition samples in factory determine amount of halibut in factory
 - Annually specified DMR applied to halibut in factory
- 35-minute time limit on deck sorting, beginning when codend is opened
- Vessel may opt out of deck sorting for one or more hauls

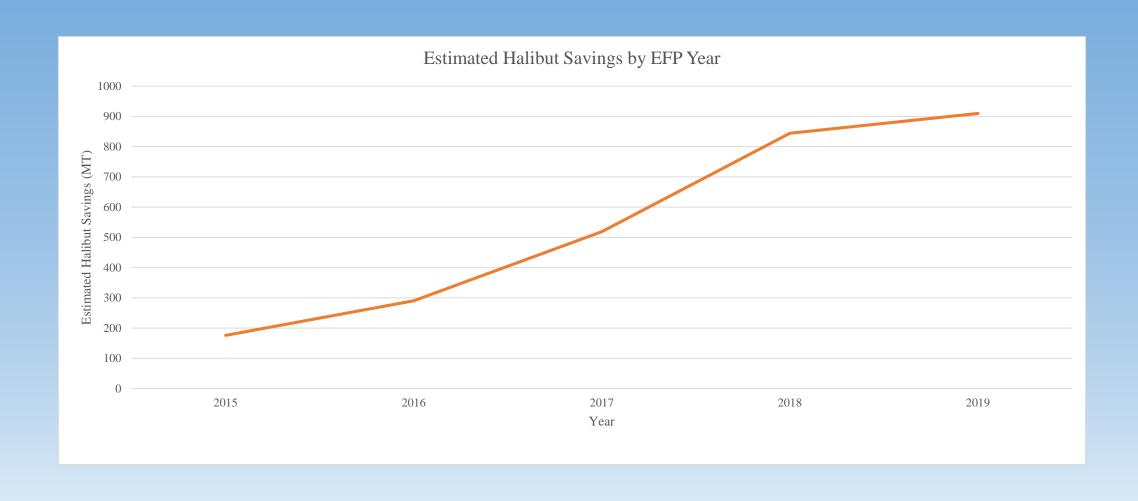
Performance Metrics of Interest

- EFP participation has increased to include all of Amendment 80 and some CDQ and TLAS non-pollock fishing
 - 9 vessels in 2015
 - 12 vessels in 2016
 - 17 vessels in 2017
 - 21 vessels in 2018
 - 22 vessels in 2019
- EFP represents most yellowfin sole and other flatfish harvest, and a significant proportion of Pacific ocean perch and Atka mackerel

EFP Performance Across Years*

	Number of	Total Groundfish	Halibut Catch	Halibut	Mortality	Halibut Mortality at	Halibut Savings
Year	Vessels in EFP	Catch (MT)	(Encounter) Rate	Mortality (MT)	Rate	Annual DMR (MT)	(MT)
2015	9	38,561	1.3%	234	49%	409	176
2016	12	79,905	0.9%	331	45%	620	290
2017	17	206,768	0.8%	900	54%	1,418	519
2018	21	220,078	1.1%	1,210	49%	2,054	844
2019	22	235,547	1.4%	1,600	50%	2,510	910

^{*}Note when comparing years that there have been changes in number of vessels, timeframe for deck sorting, geographic areas, target fisheries, etc.


Selected Performance Metrics

- Halibut bycatch "catch rate" increased somewhat from last year
 - 1.3% in 2015
 - 0.9% in 2016
 - 0.8% in 2017
 - 1.1% in 2018
 - 1.4% in 2019
- Overall halibut mortality rate continues to be around 50%
 - 49% in 2015
 - 45% in 2016
 - 54% in 2017
 - 49% in 2018
 - 50% in 2019

Potential Future Developments in Deck Sorting

- Second field trial of electronic length board scheduled for mid-October
- Will test the original length board developed by industry as well as version currently used by RACE Division for survey work in a deck sorting application
- Final rule on implementation of deck sorting is currently in review with Department of Commerce, expected to be in regulation by January 2020

Change in annual halibut mortality savings over DS EFPs 2015 to 2019

