An age-structured assessment for yelloweye rockfish (Sebastes ruberrimus) in Southeast Alaska Outside Waters

Kray Van Kirk Alaska Dept. of Fish and Game

Andrew Olson
Ben Williams
Jennifer Stahl
Kamala Carroll

Southeast Alaska Outside Waters

Data updated through 2015

No changes from September

Model issues

1. Overfits to survey density data
2. Overestimates M
3. Underestimates uncertainty
4. Requires additional constraints in penalties and mechanisms in density likelihood

Suggested mechanisms

1. Fix M
2. Iterative reweighting of survey density data (SDNR)
3. RMSE addition to density likelihood
4. Addition of extra variance term in density likelihood

Changes to model data \& structure

Structural changes

1. Error in density likelihood corrected
a) Resolves model over-fitting to density survey data
b) Resolves underestimation of model uncertainty
c) Resolves model estimate of M (previously too high)
d) Eliminates need for RMSE or other mechanisms in density likelihood

$$
\begin{aligned}
& \operatorname{var}(\log (\hat{D}))=\log \left(1+\frac{\operatorname{var}(\hat{D})}{\hat{D}^{2}}\right) \\
& \operatorname{var}(\log (\hat{D}))=\log \left(1+\frac{\operatorname{sd}(\hat{D})}{\hat{D}^{2}}\right)
\end{aligned}
$$

Standard deviation of normalized residuals

$$
\max (s d n r)<\left[\chi_{0.95}^{2} /(m-1)\right]^{0.5}=1.231(\text { Francis 2011) }
$$

— Data

- First pass
- Second pass

Third pass

Models presented

1. Uncorrected Global model
2. Corrected Global model
3. Fixed M

Primary parameters

Corrected and Fixed M: 10,000,000 MCMC draws Every $500^{\text {th }}$ retained 25\% burn-in

Uncorrected: 2,500,000 MCMC draws Every $100^{\text {th }}$ retained 25\% burn-in
$M=0.032$
Tier $4=0.026$

Result: Total spawning biomass

Total recruitment

Results: recruitment indications

Observed catch composition CSEO

Results: recruitment indications

Observed catch composition SSEO

Results: recruitment indications

Observed catch composition EYKT

Results: Commercial fisheries CPUE

Results: IPHC survey CPUE

Model Results: Likelihoods

Likelihood	Corrected model	Fixed M	Uncorrected model
Commercial catch	-2.06	-2.06	7.26
Sport catch	-1.38	-1.38	-0.48
Age composition	835.77	835.94	2660.93
Survey density	6.40	7.66	2072.84
CPUE	-43.70	-43.97	-42.07
IPHC CPUE	10.51	10.53	25.29

Model Results: Comparisons

Deviance Information Criterion
DIC values for models from $10,000,000$ MCMC iterations, saving every $500^{\text {th }}$

	Corrected -Chain 1	Corrected - Chain 2	Uncorrected*
Expectation of log-likelihood	1825	1824	9743
Expectation of theta	1832	1927	10274
Effective number of parameters	-7	-103	-632
DIC	1818	1722	9111

*The Uncorrected model was from the previous MCMC run, using 2,000,000 iterations and preserving every $100^{\text {th }}$

Model Results: Mean recruitment

Global model evaluation

Retrospective analysis: density

Fixed M model evaluation

Retrospective analysis: density

Global model evaluation

Retrospective analysis: spawning biomass

Fixed M model evaluation

Retrospective analysis: spawning biomass

Retrospective analysis: age 8 recruitment

Fixed M model evaluation

Retrospective analysis: age 8 recruitment

Spawning biomass projections

Model Recommendation

Flevel	Biomass (metric tons)	ABC (metric tons)
$F_{65}(0.022)$	$\mathrm{L} \mathrm{90} \mathrm{\%} \mathrm{CI}(8392)$	150
$F_{60}(0.026)$	$\mathrm{L} 90 \% \mathrm{CI}(8392)$	181
$F_{55}(0.031)$	$\mathrm{L} 90 \% \mathrm{CI}(8392)$	217
CURRENT ABC $(F=0.02$, assumes no selectivity)	$\mathbf{2 1 1}$	

Current ABC (211 tons) under global model $=F=0.0305$ 2015 OFL (361 tons) under global model $=F=0.0419$

If the corrected global model were accepted for purposes of management advice, the author recommends setting harvest levels to F_{65} and using the lower 90% confidence interval of the modelestimated biomass to set catch levels, which produces an $A B C$ level for 2016 of $\mathbf{1 5 0}$ metric tons and is directed towards recovery from observed declining abundance.

Priorities

1. Re-analyze ADF\&G survey data for global model;
2. Explore alternative methods for ROV survey -adaptive-cluster sampling for relative density zones across habitat
