An age-structured assessment for yelloweye rockfish (Sebastes ruberrimus) in Southeast Alaska Outside Waters

Kray Van Kirk Alaska Dept. of Fish and Game

> Andrew Olson Ben Williams Jennifer Stahl Kamala Carroll

Southeast Alaska Outside Waters

Data updated through 2015

No changes from September

Model issues

- 1. Overfits to survey density data
- 2. Overestimates M
- 3. Underestimates uncertainty
- 4. Requires additional constraints in penalties and mechanisms in density likelihood

Suggested mechanisms

- 1. Fix *M*
- 2. Iterative reweighting of survey density data (SDNR)
- 3. RMSE addition to density likelihood
- 4. Addition of extra variance term in density likelihood

Structural changes

- 1. Error in density likelihood corrected
 - a) Resolves model over-fitting to density survey data
 - b) Resolves underestimation of model uncertainty
 - c) Resolves model estimate of *M* (previously too high)
 - d) Eliminates need for RMSE or other mechanisms in density likelihood

$$\operatorname{var}(\log(\hat{D})) = \log\left(1 + \frac{\operatorname{var}(\hat{D})}{\hat{D}^2}\right)$$
$$\operatorname{var}(\log(\hat{D})) = \log\left(1 + \frac{\operatorname{sd}(\hat{D})}{\hat{D}^2}\right)$$

 \hat{D}^2

$max(sdnr) < [\chi^2_{0.95}/(m-1)]^{0.5} = 1.231$ (Francis 2011)

- 1. Uncorrected Global model
- 2. Corrected Global model
- 3. Fixed M

Corrected and Fixed M: 10,000,000 MCMC draws Every 500th retained 25% burn-in

Uncorrected: 2,500,000 MCMC draws Every 100th retained 25% burn-in

M = 0.032 *Tier 4* = 0.026

Total recruitment

Observed catch composition CSEO

Observed catch composition SSEO

|--|

Observed catch composition EYKT

.

Likelihood	Corrected model	Fixed M	Uncorrected model
Commercial catch	-2.06	-2.06	7.26
Sport catch	-1.38	-1.38	-0.48
Age composition	835.77	835.94	2660.93
Survey density	6.40	7.66	2072.84
CPUE	-43.70	-43.97	-42.07
IPHC CPUE	10.51	10.53	25.29

Deviance Information Criterion

DIC values for models from 10,000,000 MCMC iterations, saving every 500th

	Corrected – Chain 1	Corrected – Chain 2	Uncorrected*
Expectation of log-likelihood	1825	1824	9743
Expectation of theta	1832	1927	10274
Effective number of parameters	-7	-103	-632
DIC	1818	1722	9111

*The Uncorrected model was from the previous MCMC run, using 2,000,000 iterations and preserving every 100th

Model Results: Mean recruitment

Gelman diagnostic

Retrospective analysis: density

Retrospective analysis: density

Retrospective analysis: spawning biomass

Retrospective analysis: spawning biomass

Retrospective analysis: age 8 recruitment

Retrospective analysis: age 8 recruitment

<i>F</i> level	Biomass (metric tons)	ABC (metric tons)
F ₆₅ (0.022)	L 90% CI (8392)	150
F ₆₀ (0.026)	L 90% CI (8392)	181
F ₅₅ (0.031)	L 90% CI (8392)	217
CURRENT ABC $(F = 0$.02, assumes no selectivity)	211

Current ABC (211 tons) under global model = F = 0.03052015 OFL (361 tons) under global model = F = 0.0419

If the corrected global model were accepted for purposes of management advice, the author recommends setting harvest levels to F_{65} and using the lower 90% confidence interval of the model-estimated biomass to set catch levels, which produces an ABC level for 2016 of **150** metric tons and is directed towards recovery from observed declining abundance.

- 1. Re-analyze ADF&G survey data for global model;
- 2. Explore alternative methods for ROV survey adaptive-cluster sampling for relative density zones across habitat

