Thank you!

Ivonne Ortiz & Stephani Zador

With contributions from:
Anna Abelman, Kerim Aydin, Sonia Batten, Nick Bond, Mathew W. Callahan, Louisa Castrodale, Wei Cheng, Kathleen Easley, Thomas Farrugia, Sarah Gaichas, Timothy Jones, Robb Kaler, Kathy Kuletz, Ben Laurel, Emily Lemagie, Jackie Lindsey, Ivonne Ortiz, Clare Ostle, Noel Pelland, Heather Renner, Lauren Rogers, Nora Rojek, Natalie Rouse, Greg Ruggerone, Kevin Siwicke, Phyllis Stabeno, Rob Suryan, Rick Thoman, Muyin Wang, George Whitehouse, Bruce Wright, Stephani Zador

photos: photolib.noaa.gov
Risk Table

Environmental/Ecosystem Considerations

<table>
<thead>
<tr>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple indicators showing consistent adverse signals a) across the same trophic level as the stock, and/or b) up or down trophic levels (i.e., predators and prey of the stock)</td>
</tr>
<tr>
<td>- Al Pacific cod</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No apparent environmental/ ecosystem concerns</td>
</tr>
<tr>
<td>- Northern Rockfish</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Noteworthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Large scale changes SST patterns</td>
</tr>
<tr>
<td>• Key temperatures for Al groundfish</td>
</tr>
<tr>
<td>• Pcod eating less fish</td>
</tr>
</tbody>
</table>

2023 Ecosystem Status Report – Aleutian Islands

Assessment 2023

- Sustained warmer temperature for 10 years
- Warmest winter on record
- Lowest heat and nutrients flux through passes, deeper mixed layer
- Seabirds reproductive success: above mean in EAI; mixed in WAI
- HABs increase EAI: 3,793 µg/100 g in blue mussels (1000 µg/100 g potentially fatal)

Multi-year since ~2013/14 –now linked to regime shift

- Sustained mid-depth & surface warmer temperatures, lower productivity
- Pinks impact: 3rd highest abundance, satellite chla
- Rockfish dominate pelagic foragers - energy banked in little preyed-on, long-lived rockfish (and pink salmon)

Implications for this year

- SST regime shift implies higher temperatures are the new norm
- sat SST 1-13.4°C, Bottom temperature max 6 - 6.6°C, but is warmer in Sep & <100 m depth
- fish & invertebrate prey availability expected in EAI, mixed availability in WAI
- HABs increased risk to human health in EAI

Cumulative effects

- higher bioenergetic costs
- lower productivity
- zoop, fish grow faster
- phenology might start to shift
- changes in prey field timing, composition and location
- rockfish & pink salmon main pathway of zooplankton into foodweb
- past indicators (e.g. PDO) may not be as useful in the future; their relationships with physical and ecological processes may vary as the climate continues to change

Risk Table

Environmental/Ecosystem Considerations

<table>
<thead>
<tr>
<th>Level 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No apparent environmental/ ecosystem concerns</td>
</tr>
<tr>
<td>- Northern Rockfish</td>
</tr>
</tbody>
</table>

2023 Ecosystem Status Report – Aleutian Islands

Assessment 2023

- Sustained warmer temperature for 10 years
- Warmest winter on record
- Lowest heat and nutrients flux through passes, deeper mixed layer
- Seabirds reproductive success: above mean in EAI; mixed in WAI
- HABs increase EAI: 3,793 µg/100 g in blue mussels (1000 µg/100 g potentially fatal)

Multi-year since ~2013/14 –now linked to regime shift

- Sustained mid-depth & surface warmer temperatures, lower productivity
- Pinks impact: 3rd highest abundance, satellite chla
- Rockfish dominate pelagic foragers - energy banked in little preyed-on, long-lived rockfish (and pink salmon)

Implications for this year

- SST regime shift implies higher temperatures are the new norm
- sat SST 1-13.4°C, Bottom temperature max 6 - 6.6°C, but is warmer in Sep & <100 m depth
- fish & invertebrate prey availability expected in EAI, mixed availability in WAI
- HABs increased risk to human health in EAI

Cumulative effects

- higher bioenergetic costs
- lower productivity
- zoop, fish grow faster
- phenology might start to shift
- changes in prey field timing, composition and location
- rockfish & pink salmon main pathway of zooplankton into foodweb
- past indicators (e.g. PDO) may not be as useful in the future; their relationships with physical and ecological processes may vary as the climate continues to change
Al Pacific Cod (Level 2)
- Persistent warm conditions
- Narrow optimal thermal range for >20% egg hatch success
- Single-batch spawners
- Increased bioenergetic costs, increased consumption
- Lower amount of fish in diet since ~2010
- Lower prey quality resulting in reduced fish condition
- Decreased consumption of Atka as prey

Northern Rockfish (Level 1)
- Warm conditions and lower than average fish condition BUT
- Eggs hatch internally – live bearers, parturition April - June
- Long-lived species - each adult cohort’s genetic composition is heavily influenced by the environmental conditions experienced during the first year at sea (Maselko et al 2020)
- Genetic portfolio includes the environmental conditions of every cohort’s first year
- No apparent effects from Eastern Kamchatka Pink Salmon
Noteworthy

Changes in large scale sea surface temperature patterns

- Thermal regime shift in North Pacific annual mean sea surface temperature 2013/14
- PDO indicator may not be as useful as it used to be
- First mode of variability of SST has changed
- Relationships with physical and ecological processes may vary as the climate continues to change

Lemagie & Callahan

Ortiz, Bond, Suryan
Most vulnerable: **Pacific cod**, narrow optimal temperature for >20% egg hatch success: 3-6°C January to May at 100-200 m. Eggs adhere to seafloor.

Bottom trawl survey max bottom temperature: 6.6°C potentially same temperature in Jan-May in some areas. No. days ≥6°C since 2014:16 11 times in 2016, depths 68-141m; 6 times depths >100m, across AI

Second most vulnerable: **Atka mackerel**, wide nesting temperature 3.7-10.7°C in July to October, 15°C lethal for eggs, shallowest nests at 34 m depth.

Atka mackerel: Bottom trawl survey max SST: 12.3; twice above 12°C max satellite SST 13.39. Satellite SST No. days ≥ 12°C since 2014: 79. In WAI & EAI.

Persistent warming conditions: The SSC suggested information on which species are most vulnerable to these persistent conditions would be helpful for understanding ecosystem impact
Noteworthy Changes in Pacific cod diets

- Less fish in diets
- Even when similar amount of prey was consumed, less fish results in low fish condition
- Lower fish condition potentially due to lower prey quality + potentially higher bioenergetic costs
- Decrease of fish in diet most noticeable in western Aleutian Islands
- Trend not seen east of Samalga where prey consumption was highest in 2022 and condition was (+)

Declines of non-commercial species in WAI: The SSC encourages efforts to explore mechanistic and food-web links for these observed trends, prioritizing diet data when samples are available

Ortiz, Aydin, Zador
Current Conditions 2023

Cooling in spring summer, warmest winter

Long-term Sea Surface Temperature

- 2023 – Cooling of spring and summer
- 2023 – Warmest winter in 124 years
- Warming trend winter and summer

Thoman & Lemagie and Callahan
Satellite SST

- Warm winter throughout
- Cooler spring & summer but still above 1985-2015 mean
- Current Fall – warmest in WAI

NOAA Coral Reef Watch data, courtesy National Environmental Satellite, Data, and Information Service (Updated 11-10-2023)

Data are modeled satellite products and periodic discrepancies or gaps may exist across sensors and products.

Contact: matt.callahan@noaa.gov

Lemagie & Callahan
Eddy Kinetic Energy

- Historical minima in EAI
- Currently below average in all three regions
- Lower transport of heat, salt and nutrients through passes across the chain
Lower than average spring phytoplankton biomass, negative trend across time series

- Satellite chl-a, spring (Apr-Jun) phytoplankton biomass lower than 1998-2022 spring average
- Evidence for a negative trend in spring Al chl-a across the GlobColour time series
- Low chl-a also in the adjacent off-shelf areas of EBS, shelf areas of GOA in recent years
- Note ratio of small to large phytoplankton fluctuates (next slide)
More species of smaller size copepods and lower meso-zooplankton biomass

Continuous plankton recorder

- Large diatom biomass in 2022: higher than 2000-2021 average
- Sustained trend in copepod community size points to smaller size of copepods
- Lower meso-zooplankton biomass than 2000-2021 average in 2022

Ostle & Batten
Good foraging conditions in eastern Aleutians for all types of prey, mixed in western Aleutians

Seabird Reproductive Success
- Average or above for EAI seabirds: **good foraging conditions in summer for plankton and fish foragers in EAI; mixed in WAI**

<table>
<thead>
<tr>
<th>Primarily fish eaters</th>
<th>Primarily zooplankton eaters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>EAI</td>
</tr>
<tr>
<td>glaucous-winged gull</td>
<td>-</td>
</tr>
<tr>
<td>common murre</td>
<td>-</td>
</tr>
<tr>
<td>thick-billed murre</td>
<td>-</td>
</tr>
<tr>
<td>horned puffin</td>
<td>-</td>
</tr>
<tr>
<td>tufted puffin</td>
<td>-</td>
</tr>
<tr>
<td>red-legged kittiwake</td>
<td>-</td>
</tr>
<tr>
<td>black-legged kittiwake</td>
<td>-</td>
</tr>
<tr>
<td>fork-tailed storm petrel</td>
<td>-</td>
</tr>
<tr>
<td>leach's storm petrel</td>
<td>-</td>
</tr>
<tr>
<td>thick-billed murre</td>
<td>-</td>
</tr>
<tr>
<td>murres</td>
<td>-</td>
</tr>
<tr>
<td>parakeet auklet</td>
<td>-</td>
</tr>
<tr>
<td>least auklet</td>
<td>-</td>
</tr>
<tr>
<td>whimbrel auklet</td>
<td>-</td>
</tr>
<tr>
<td>crested auklet</td>
<td>-</td>
</tr>
</tbody>
</table>

Western Aleutians

Seabird Diets
- Mostly capelin in the EAI 86% in tufted puffin chick diets
- Fish and squid in WAI: 63% squid in in tufted puffin chick diets
- Atka mackerel 43% of diet of horned puffins

Rojek, Renner, Jones, Lindsay, Kaer, Kuletz, Ortiz, Zador,
Increased PST in June above potentially fatal levels for humans and decreased school enrollment

Harmful Algal Blooms

- Maximum PST recorded in June 15: 3.7x above level considered potentially fatal in humans; 47x above legal limit
- Seabirds (shearwaters) planned to be tested for HABs after over 150 carcasses were reported in Akutan in mid-September; 6 samples tested negative for Highly Pathogenic Avian Influenza

School enrollment

- Decreased school enrollment in 2022-23
 - Central Aleutians: decrease driven by Adak School
 - Eastern Aleutians: decrease driven by Unalaska elementary & high school
- Lower enrollment decreases the stability of the community.
- Enrollment bottomed out in AK in 2021-22 and has not recovered in the Aleutians.

Farrugia et al., Ortiz
National Multi-Model Ensemble Forecast 2024

- **62% chance of El Niño** during April – June 2024,
- Climate prediction center, NOAA https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml

- **Warm** conditions for western Aleutians (NMME, Bond) for January – March: potential issue for Pacific cod.

- Ensemble indicates conditions should not be extreme relative to the past 20-30 years

- Sea ice should extend south of 60°N perhaps all the way to M2, and as far south as Bristol Bay along the coast

Sea surface anomalies from National Multi-Model Ensemble

- **January - March**
- **March - May**
Persistent warm conditions: wide range of effects

Multi-year patterns

Satellite chl-a, Diatoms & Copepods

- Satellite-derived chl-a reverted to generally lower than average since 2014.
- Satellite chl-a in EBS off-shelf also decreasing since 2014
- Smaller copepods
- Lower meso-zooplankton biomass

Temperature and Fish Conditions

- Warmer temperatures
- Condition factor average or below average since 2014
- Higher energetic costs, increased food consumption
Eastern Kamchatka pink salmon in odd years

- **Multi-year patterns**

 - Continued high level for a low abundance year
 - Biennial pattern at several trophic levels from diverse sources
 - No statistical analysis has been conducted
 - Potential thresholds: 2009 for high abundance years

Tufted puffin hatch date anomaly at Buldir, Rokek et al.
No effect on reproductive success

Spencer et al. 2020

Lowe et al. 2021

![Chart showing pink salmon abundance](chart1.png)

![Chart showing spring satellite chla anomaly](chart2.png)

![Chart showing Pacific Ocean perch](chart3.png)

![Chart showing catch at age estimates of age 2 Atka mackerel](chart4.png)
POP and Northern Rockfish as main pelagic foragers

Multi-year patterns

- Increased competition with other fish feeding on zooplankton, changes in cod diet may be due to decreasing Atka mackerel
- POP expanding area occupied
- Longer mean lifespan of groundfish community (35 to 60 years) means a slower turnover rate & dampened effects of environmental variability (increased ecological stability)
- Spatial competition with Atka mackerel, pollock?
Summary and implications

Jan – Mar warmest winter on record, sustained warmer temperatures and large-scale changes in SST

Potential concern for higher bioenergetic costs, changes in phenology (timing and success of egg development, growth rates, and utility of past indicators (e.g. PDO may not be as useful in the future)

Lower than average phytoplankton biomass (sat chl-a) and small copepod size

Decreased primary production/ lower availability of large copepods as prey, despite favorable climatological conditions for zooplankton

Seabird reproductive success above average in EAI for plankton and fish-eating seabirds; mixed for WAI

Indicates potential availability of prey and good foraging conditions for both plankton and fish eating groundfish in EAI, but mixed availability in prey in WAI

HABs increased to 47x FDA limit in June

Indicates potential seasonal risk to human health and risk to predators in the ecosystem

Pacific cod diets

Decreased availability of fish in diets, available prey of lower quality and/ or increased bioenergetic costs and consumption.

Rockfish dominance of pelagic forage fish biomass

Potential for increased competition for zooplankton and decreasing availability of Atka mackerel and pollock as prey for fish and marine mammals. Rockfish are long-lived and are not a preferred prey item, but may increase resilience of ecosystem

Increasing Eastern Kamchatka pink salmon during both low abundance and high abundance years

Potential biennial pattern cascading to fish and combined with increased temperatures since 2014. Eastern Kamchatka pink salmon export energy from the system

The persistent warm conditions + rockfish dominance + increasing pink salmon abundance jointly might indicate transition of the ecosystem to a state where rockfish and pink salmon are the main pathway of zooplankton into food web
Ecosystem Status Reports through 2022 are available here: