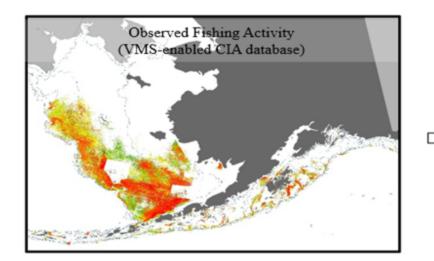
Assessment of the Effects of Fishing on Essential Fish Habitat in Alaska for the 2022 5-year Review

John V. Olson, Habitat Conservation Division, NMFS Alaska Region, Anchorage, AK T. Scott Smeltz, Alaska Pacific University Steve Lewis, Sustainable Fisheries Division, NMFS Alaska Region, Juneau AK

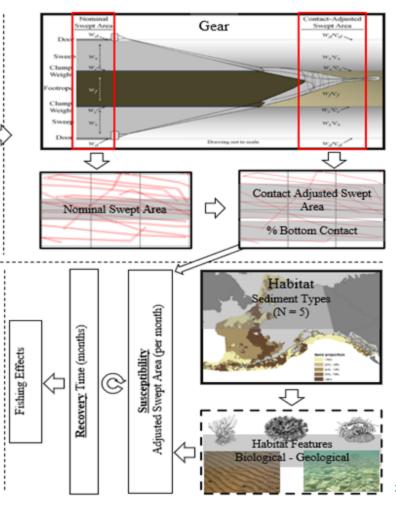
- 1. Overview of Fishing Effects model
- 2. Review of methodology to evaluate the effects of fishing on EFH
- 3. Updates for the 2022 EFH 5-year Review
- 4. Input from the SSC on this process

Fishing Effects (FE) Model

During the 2017 EFH 5-year review, the SSC requested several updates to the Long-term Effects Index (LEI) model to make the input parameters more intuitive and to draw on the best available data. In response to their requests, the Fishing Effects (FE) model was developed.


It is based on interaction between habitat impact and recovery, which depend on the amount of fishing effort, the types of gear used, habitat sensitivity, and substrate.

- The FE model is cast in a discrete-time framework.
- The FE model implements sub-annual (monthly) tracking of fishing impacts and feature recovery.
- The FE model draws on spatially explicit vessel monitoring system (VMS) data to determine fishing locations.
- The FE model incorporates an extensive, global literature review and vulnerability assessment from Grabowski et al. (2014) to estimate habitat susceptibility and recovery dynamics.



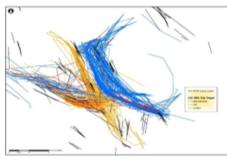
Fishing Effects Model Overview

$$H_{t+1} = H_t(1 - I'_t) + h_t \rho'_t$$

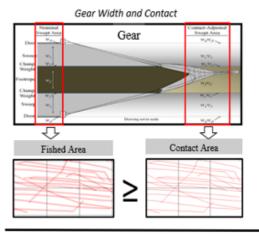
H: habitat undisturbed from fishing *h*: habitat disturbed from fishing *I*': monthly impact rate ρ' : monthly recovery rate

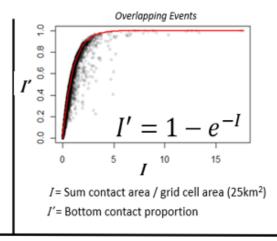
VMS & Defining Fishing Gear Footprint

processors that have some or at of their operations cleaned. These charges increases the statistics instatists of bala colored to the program, address colored and the colored to the program address colored by manage so risks and there is a source of a source

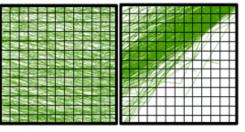

VMS-Observer Enabled Catch-In-Areas Database

Steve G. Lowis GES Coordinator/Analyst/DB NOAA Fisheries, Alaska Region


In 2007, NMTS Aduka Region began developing a fadaries harvent darahase harvend integrate data sequent flow colosiand observers and data on vesual envenants acquised by satellite through the Vesuel Manistering System (VMS). This VMS-Observer Enabled Cathol In-Averas (VDE-CEA) databases in designed to increase the spatial recording of the Cathol Acceusating System for both the observed number well flows and thus to facilitate more acceuster analysis of filtering smangement issues.


The VOE-CIA database integrates catch data from the Catch Accounting System (which has the spatial resolution of a NMPS Reporting Area) into a database that resolves the OIS data into polypone with sense of approximately seem kilometers. In an uncertified area, sixty four gold Db fit indef come state statistical area. However, a given seven-kilometer polygons boundary of manual for the state of the state of the state of the state of the boundary of manual for the state of the state of the state of the state (manual state) and for the state of the state of the state of the state of which will vary with latitized and its subgature state of the state of the state of which will vary with latitized and its subgature state of these a dataset of the state of which will vary with latitized and its subgature state of these as dataset of the state of which will vary

Defining Fishing Gear Footprint



25% bottom contact

А.		γ	41	М	Г	T		Λ	J	Ρ		í		Π	IF	Ł		R	0	U	N	Ν		R	2		γ
M	\bigcirc	Я	1	n	Γ	Τ	A	1	(Γ		Π		Π		F	4		\square	8	-	K	5	\mathbf{P}		Z	
M	\mathbb{Z}	9	Î	Ч	T	V	1		\overline{V}			4		Ζ		E	E	1	2			Ŕ	2	3	¥		Ľ
Å	1		V		$\left \right\rangle$	n.	2	1	47		1			6					ľ		E	х		÷.		\mathcal{F}	2
	1	V	Γ		Ł	1			1	Γ	Ы		1	${}$											2	1	
Е		\$	ĕ	V		4	ŕ.	1		ň	1		Γ			Γ	Г		1		-	F	1			2	Γ
\geq	5	٨	Δ	H	P	4	2	Ł			1		\sim	Ľ.	IC	Γ	Γ								11		
L	Γ	3	М	N.	P	đ		И		5	d:	ŕ		\geq							-	-	P	F			$\left[\right]$
L	T		9	2		X		U	\leq	L	P	2	<	-													Γ
R	1	L	1	U	E	7	÷	-	\mathbf{k}		Γ	\langle				Γ	Г	Γ									Γ
		7	Þ	ł,	ł,	7	2	5	1				5	1													Γ
E	A	4	4	P	1		7	a,		$\overline{\Lambda}$			Ι		IE		Γ										Γ
Ľ				r	ħ	4	2						<		IC												Γ

Distribution and Scale

90% bottom contact

Gear Descriptions & Contact Adjustment

67 individual gear descriptions

Fishery	Vessel type	Area	Gear	Target1	Target2	Vessel Length (ft)	Season	Depth Range (fath.)	Nom Width (m)
GOA Pollock Pelagic Trawl Sand Point	cv	GOA	PTR	р	all others	<75			50
GOA Pollock Pelagic Trawl	cv	GOA	PTR	Ρ	all (but K, S)	≥75			75
GOA Slope Rockfish Pelagic Trawl	CV	GOA	PTR	к	s	≥75			75
GOA Slope Rockfish Pelagic Trawl	CP	GOA	PTR	к	w	all			100
GOA PCod Bottom Trawl Inshore	CV	GOA	NPT	с	8, P	≥75			90
GOA Deepwater Flatfish Bottom Trawl	cv	GOA	NPT	D	w, x	≥75			90
GOA Shallowwater Flatfish Bottom Trawl	CV	GOA	NPT	н	all others	≥75			90
GOA PCod Bottom Trawl Sand Point	CV	GOA	NPT	с	all others	<75			55
GOA Deepwater Flatfish Bottom Trawl CP	CP	GOA	NPT	D, W	×	all			193
GOA Shallowwater Flatfish/Cod Bottom Trawl CP	CP	GOA	NPT	н, с	L, all others	all			193
GOA Slope Rockfish Bottom Trawl CP	CP	GOA	NPT	к	s	all			75
BS Pollock Pelagic Trawl (incl Mothership)	CV	BS	PTR	Р	B, all others	<125 ≥300	A	≥90	62
BS Pollock Pelagic Trawl (incl Mothership)	CV	85	PTR	P	B, all others	<125 ≥300	A	60-90	58
BS Pollock Pelagic Trawl (incl Mothership)	cv	85	PTR	Р	B, all others	<125 ≥300	A	<60	50
B5 Pollock Pelagic Trawl (incl Mothership)	CV	BS	PTR	P	B, all others	<125 ≥300	в	≥90	77
BS Pollock Pelagic Trawl (incl Mothership)	CV	BS	PTR	P	B, all others	<125 ≥300	В	60-90	73
BS Pollock Pelagic Trawl (incl Mothership)	CV	BS	PTR	Р	B, all others	<125 ≥300	в	<60	64
BS Pollock Pelagic Trawl	CV	BS	PTR	P	B, all others	125-151	А	≥90	93
BS Pollock Pelagic Trawl	CV	BS	PTR	P	8, r**				
BS Pollock Pelagic Trawl	cv	85	PTR	P	B, i oth	_			
BS Pollock Pelagic Trawl	cv	85	PTR	р	B, i oth	and the second se			ventional

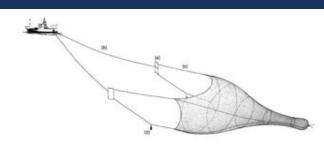
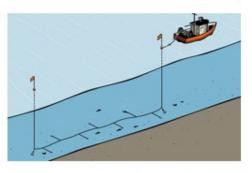
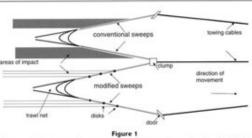
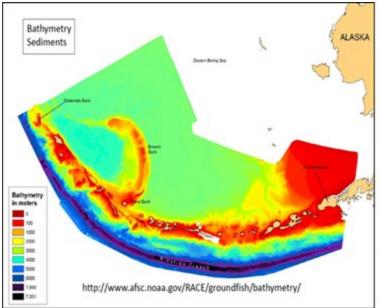
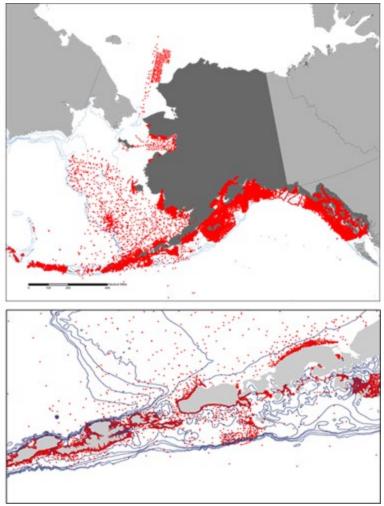



Figure 10. Single boat pelogic trawl




Diagram of the twin trawl system, complete with sweeps (conventional and modified), towed simultaneously behind a vessel and used to test whether raised trawl sweeps reduce flatfish herding. Actual total width was approximately 250 m. Shaded areas represent the area of contact with the seafloor.



Habitat Types

250,000+ points with 6,000+ sediment descriptions coded into 5 sediment classes: Mud, Sand, Granule/Pebble, Cobble, Boulder

Review of Susceptibility & Recovery parameters

Assessing the Vulnerability of Marine Benthos to Fishing Gear Impacts

JONATHAN H. GRABOWSKL¹ MICHELLE BACHMAN,² CHAD DEMAREST,³ STEVE EAYRS,⁴ BRADLEY P. HARRIS,² VINCENT MALKOSKL⁶ DAVID PACKER,² and DAVID STEVENSON⁸

Marine Science Center, Northeastern University, Nahant, Masachusetts, USA "New England Fridery Management Oward, Newburgort, Masachusetts, USA 'NOAA/SMSI'S Northean Fisheries Science Center, Woods Hild, Masachusetts, USA 'Call of Maise Research Institute, Pertland, Maine, USA 'Department of Environmental Science, Aluska Pacific University, Anchorage, Aluska, USA 'Masachusetts Drivision of Marine Fisheries, New Betlford, Massachusetts, USA 'NOAA Noticeau Marine Fisheries Service, Highlands, New Jercy, USA 'NOAA Northeau Regional Office, Gouverler, Masachusetts, USA

"develop a framework for generating and organizing quantitative susceptibility (based on percent loss of structural habitat from a single interaction with the gear) and recovery (i.e., the time required for recovery of lost structure) parameters for each biological (e.g., sponges, ascidians, mollusks) and geological (e.g., mud burrows, sand ripples, cobble, and boulder piles) feature common to the following five substrates: mud, sand, granule–pebble, cobble, and boulder"

Number: STUDY 239 FEATURES EVALUATED AND IMPACTS Cite: McConnaughey et al 2005 DESCRIPTION Related mudies Geological 🖉 Biological 📄 Prey 📄 Recovery? 📄 Deep-sea comb? 234 Study Characteristics Depth (m): 0-som . **Geological** features Study design Minimum: 44 52 Study relevance Maximum Fight Featuraless Grand Study appropriateness 1. Bedforms Cravel pavement bedforms mentioned but not evaluated Energy ۰. 🗄 Biogenic depression: 🔄 Gravel piles Methody/peneral comments: Analyzed mean size (wt) of 16 invert taxa in 42 Energy total Biogenic burrows (1) Shall deposits paired travil samples from inside and outside Site in similar location as compared Special case Ceochemical closed area to studies 34. 35 author describes. biogenic burrows site as high tidal currents", Flow Magh. **Biological features** Species Asterias, Crangon, Evasterias, Hyas, [7] Emergent sponge IIIt Colonial tube worms Mutube? Location Neptunea, Oregonia, Paguridae, Pagurus, Gear Types T Epifeunal bivalves IT Hydroids peralithodes, Actiniaria, Aplidium, Bristol Bay, Eastern Bering Sea, AK, USA Finergent anemones III Emergent brycosans Multiper? Generic otter trawl 🗄 Burrowing anemones 👔 Tunicates On average, 15 of 16 taxa smaller inside Shrimp traul in Soft corais [1] Leafy macroalgae closed area but individually, only a whelk and Substrate Squid trawl anemones were signif smaller 5ea pers (11) See press Cay-sit L Granule-pebble 📙 Raised footrope trawl [1] Hard corals (1) Brachispeds Muddy sand Cobbie 🔲 New Bedford scallop dredge Sand 2 Boulder 🗌 1. clam/O. quahog dradge Rock outcrop Lobster trap Cubatrone action Prey features Species Deep-sea red crab trap Same study area as #238 Informal bisalves Amphipods Longline Isopods Gilleat Brittle stars Geor notes Decaped shrin Sea unchina Impacts Look up by study # . Mysids Sand-dollars Sea stars All organisms collicted in bottom trawl, so Reviewort/Harris/Stavanson Decaped crab none of them are strictly infeuna Polychaetes ord: IK 4 53 of 105 + H +5 To No Filter Search

LITERATURE REVIEW DATABASE V 3.0

Grabowski, J. H., M. Bachman, C. Demarest, S. Eayrs, B. P. Harris, V. Malkoski, D. Packer, and D. Stevenson. 2014. Assessing the vulnerability of marine benthos to fishing gear impacts. Reviews in Fisheries Science & Aquaculture 22:142-155.

Final review?

Susceptibility & Recovery of Habitat Features

14 biological and 12 geological literature-based habitat feature categories combined into 5 sediment types (mud, sand, pebble/granule, cobble, & boulder

Amphipods, tube-dwelling

Mollusks, epifaunal bivalve, Modiolus modiolus

Mollusks, epifaunal bivalve,

Placopecten magellanicus

Polychaetes, Filograna

Polychaetes, other tube-dwelling

Anemones, actinarian

Anemones, cerianthid

burrowing

Ascidians

Bryozoans

Hydroids

implexa

Sponges

Macroalgae

Brachiopods

Corals, sea pens

В

В

В

В

В

В

В

В

В

В

В

В

В

В

Susceptibility code	Susceptibility
0	0-10%
1	10-25%
2	25 – 50%
3	>50%

τ
<1 year
1–2 years
2-5 years
>5 years

Recovery

Feature Class	Features	Mud	Sand	Gran-Peb	Cobble	Boulder
G	Bedforms		0			
G	Biogenic burrows	0	0			
G	Biogenic depressions	0	0			
G	Boulder, piled					3
G	Boulder, scattered, in sand					0
G	Cobble, pavement				0	
G	Cobble, piled				3	
G	Cobble, scattered in sand				0	
G	Granule-pebble, pavement			0		
G	Granule-pebble, scattered,			2		
	in sand					
G	Sediments,	0	0			
	suface/subsurface					
G	Shell deposits		2	2		
в	Amphipods, tube-dwelling	0	0			
в	Anemones, actinarian			2	2	2
В	Anemones, cerianthid	2	2	2		
	burrowing					
в	Ascidians		1	1	1	1
в	Brachiopods			2	2	2
в	Bryozoans			1	1	1
в	Corals, sea pens	2	2			
в	Hydroids	1	1	1	1	1
В	Macroalgae			1	1	1
в	Mollusks, epifaunal bivalve.	3	3	3	3	3
	Modiolus modiolus					
в	Mollusks, epifaunal bivalve,		2	2	2	
	Placopecten magellanicus					
В	Polychaetes, Filograna		2	2	2	2
	implexa					
в	Polychaetes, other			1	1	1
	tube-dwelling					
в	Sponges		2	2	2	2

anappear arom the NASH moder (AEEWK, 2011) Recovery codes: 0: < 1 year; 1: 1-2 years; 2: 2-5 years; 3: >5 years Blank spaces are habitat features not associated with the given sediment class G is Geological features and B is Biological features

G

G

G

G

G

G

G

G

G

G

G

G

Bedforms

Biogenic burrows

Cobble, pavement

Boulder, piled

Cobble, piled

in sand

Sediments,

suface/subsurface

Shell deposits

Biogenic depressions

Boulder, scattered, in sand

Cobble, scattered in sand

Granule-pebble, pavement

Granule-pebble, scattered,

Adapted from the SASI model (NEFMC, 2011)

Susceptibility

Class	Feature	Mud	Sand	Gran-Peb	Cobble	Boulder
G	Bedforms		2			
G	Biogenic burrows	2	2			
G	Biogenic depressions	2	2			
G	Boulder, piled					2
G	Boulder, scattered, in sand					0
G	Cobble, pavement				1	
G	Cobble, piled				3	
G	Cobble, scattered in sand				1	
G	Granule-pebble, pavement			1		
G	Granule-pebble, scattered,			1		
	in sand					
G	Sodiments,	2	2			
	suface/subsurface					
G	Shell deposits		1	1		
в	Amphipods, tube-dwelling	1	1			
в	Anemones, actinarian			2	2	2
в	Anemones, cerianthid	2	2	2		
	burrowing					
в	Ascidians		2	2	2	2
B	Brachiopods			2	2	2
в	Bryozoans			1	1	1
B	Corals, sea pens	2	2			
в	Hydroids	1	1	1	1	1
B	Macroalgae			1	1	1
в	Mollusks, epifaunal bivalve,	1	1	2	2	2
	Modiolus modiolus					
в	Mollusks, epifaunal bivalve,		2	1	1	
	Placopecten magellanicus					
в	Polychaetes, Filograna		2	2	2	2
	implexa					
в	Polychaetes, other			2	2	2
	tube-dwelling					
в	Sponges		2	2	2	2

Inclusion of long-lived species on deep and rocky habitats

At the October 2016 Council Meeting, the SSC supported the use of the FE model as a tool for assessing the effects of fishing on EFH but raised concern that the longest recovery time incorporated into the model (10 years) may not capture the recovery needed for long-lived species, in particular, hard corals that live on rocky substrate at deep depths.

To address these concerns, we added a deep and rocky substrate habitat category. (>300m, cobble & boulder habitat created new Deep/Rocky habitat type, based on Stone 2006)

Feature Class	Features	Mud	Sand	Gran-Peb	Cobble	Boulder	Deep/Rocky
В	Bryozoans			1	1	1	1
В	Corals, sea pens	2	2				
В	Hydroids	1	1	1	1	1	1
В	Polychaetes, other tube- dwelling			1	1	1	1
В	Sponges		2	2	2	2	2
В	Long-lived species						4

 Table 1. Recovery table including Deep/Rocky habitat category

Recovery codes: 0: < 1 year; 1: 1 – 2 years; 2: 2 – 5 years; 3: 5 – 10 years; 4: 10 – 50 years

Blank spaces are habitat features not associated with the given sediment class

G = Geological features; **B** = Biological features

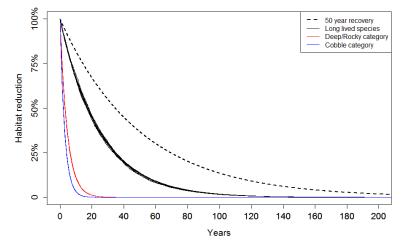
Inclusion of long-lived species on deep and rocky habitats

The FE model uses an exponential decay curve to estimate the proportion of habitat that recover each time step (ρ') from the average time to recovery (τ) using the following equation,

$$\rho' = 1 - \exp\left(\frac{-1}{\tau}\right) \tag{1}$$

The proportion undisturbed habitat in each time step (H_t) is calculate from the disturbed habitat (h_t) multiplied by ρ' plus the proportion of H_t that is not impacted (1 - I'),

$$H_{t+1} = h_t \rho' + H_t (1 - I')$$
(2)

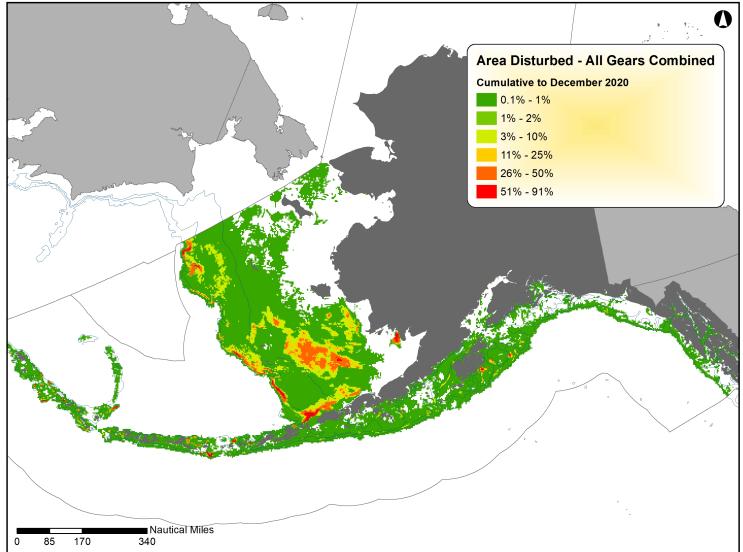

The dynamics of various recovery parameters can be explored by considering a scenario that begins with a completely disturbed habitat ($h_0 = 1$) and involves no future impacts using the following equation,

$$h_t = (1 - \rho')^t$$
(3)

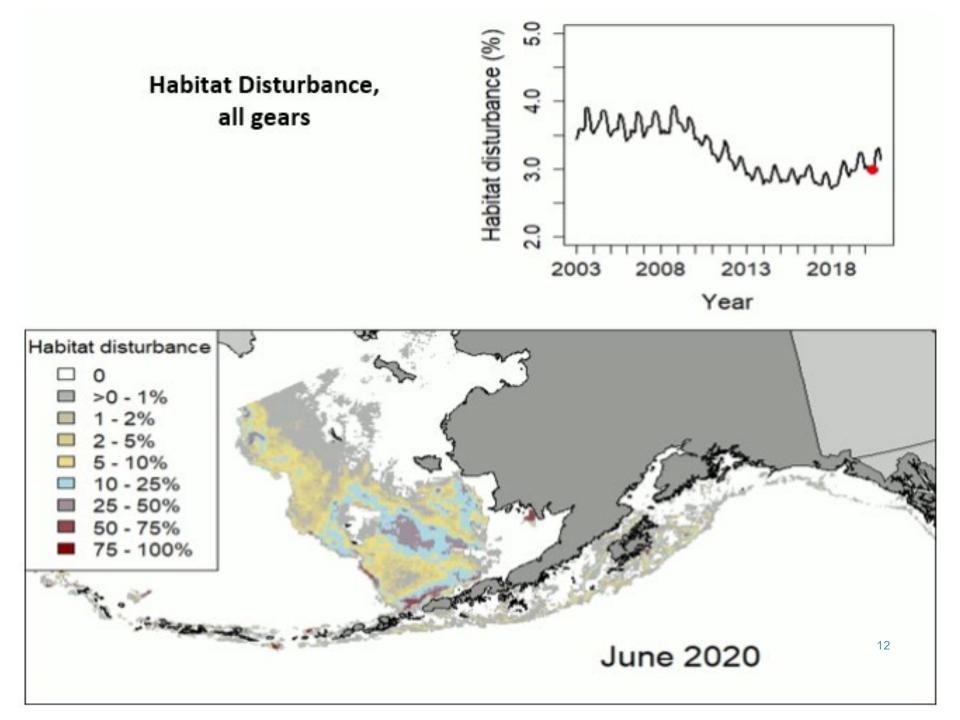
Although the FE model uses a monthly time step, t can be modeled in years to simplify interpretation. Figure A1 shows the recovery curve from Eq. 3 using various values and ranges for τ . Combing Eq. 1 and Eq. 2 and rearranging, we get,

$$\tau = -\frac{t}{\ln(h_t)}$$
(4)

Eq. 4 allows us to back calculate a recovery parameter, τ , if we have a known expectation for the proportion of a habitat remaining disturbed (h_t) after a certain number of years (t). For example, if we expect that 150 years following a complete disturbance, 5% of the habitat would still not have recovered, we can use Eq. 4 to calculate $\tau = -\frac{150}{\ln(0.05)} \approx 50$ years.

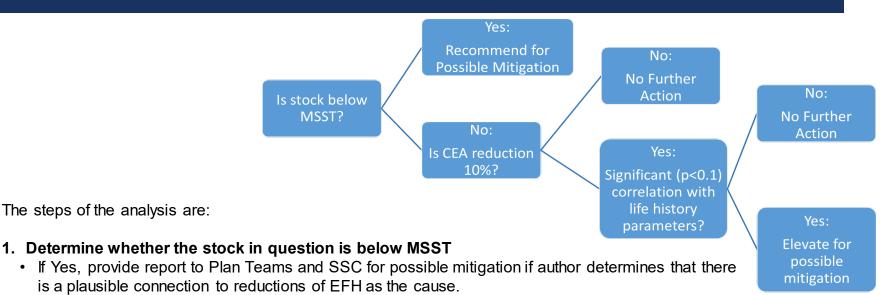


The 50-year recovery (dashed black line) represents the upper limit of recovery in the model. The long-lived species curves (solid black lines) represent 10 runs, randomly sampling from a 10-50 year recovery range. The Deep/Rocky curves (solid red lines) represent 10 runs averaging over the full suite of habitat features in the Deep/Rocky habitat category (from Table 1). The Cobble curves (solid blue lines) represent 10 run averaging over the full suite of habitat category.



FE Output – Habitat Disturbance

11


Hierarchical Impact Analysis Framework

"The proposed methods outline a hierarchical impact analysis framework that utilizes the availability of time varying estimates of fisheries effects. This framework provides an evidence-based impact assessment to assess the potential effects of fishing on EFH for crab and groundfish resources. The goal of the framework is to assess whether there is a fishing effect on EFH that is more than minimal and produces significant and temporary impact(s) on the growth-to-maturity, spawning success, breeding success, and/or feeding success of species managed by the NPFMC. The improved analytical products allow analysts to evaluate linkages between time trends in fishing effects on EFH and independently determined time trends in size-at-age, recruitment, spawning distributions and feeding distributions. It will be important to develop a mechanistic tie between the effect on EFH and the impact on the fish. "

13

Stock Author Review Process (2016)

- If No: Move on to step 2
- 2. Determine whether 10% of the CEA is affected by commercial fishing (the predicted 50 percent quantile threshold of suitable habitat of summer abundance as defined in the species distribution models)
 - If yes: Move on to step 3
 - If no: No further action required (additional analysis is appreciated, move on to step 3)
- 3. Evaluate correlations between CEA habitat reduction and life history indices
 - If significant at p<0.1: provide written report for Plan Teams and SSC
 - If not significant: No further action required

4. Provide recommendations for EFH research activities and priorities for your species

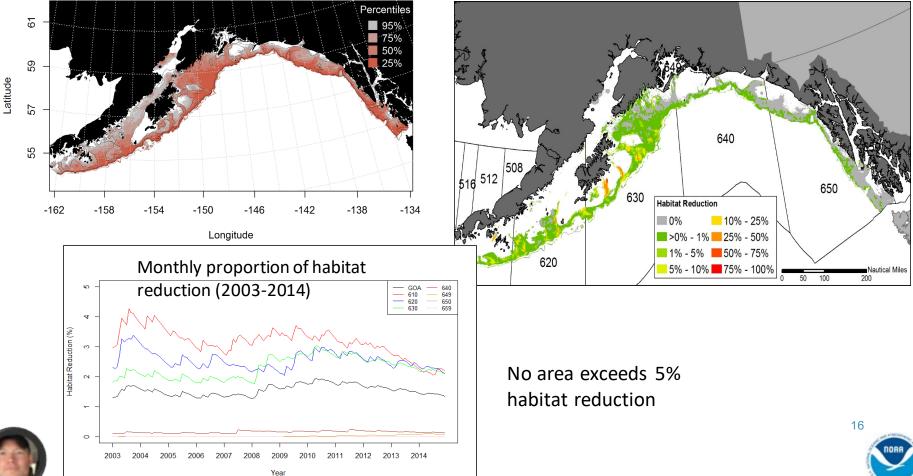
14

5. Provide a written report for distribution to the appropriate Plan Teams, SSC, and Council.

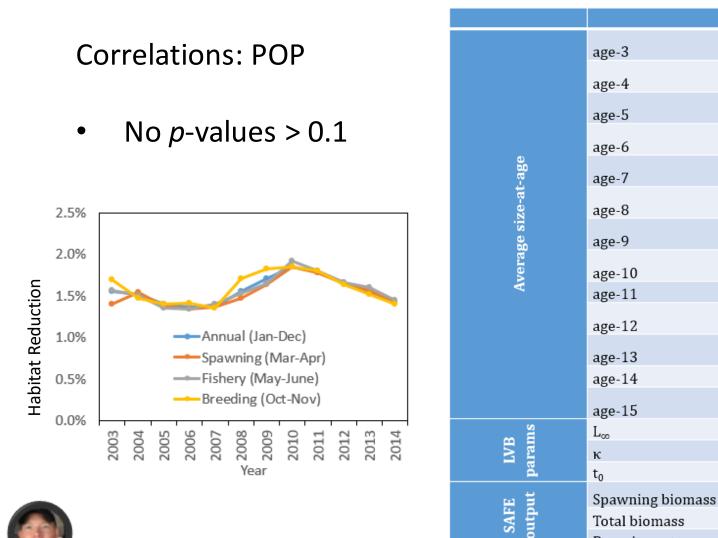
Stock Author Review

"The purpose of this criterion is not to determine whether any correlation is statistically significant, but rather to provide an objective threshold to ensure that a "hard look" has been taken for each species, as appropriate. Because multiple parameters will be examined for correlation to habitat reduction, it is possible that spurious significant (p >0.1) correlations will be found. Whenever significant correlations are found, the expert judgement and opinion of the stock assessment authors will be important to determine whether there is a plausible connection to reductions in EFH as the cause, or if the result is spurious. If stock assessment authors determine that the correlation between the impacts to the CEA and life history parameter(s) suggest a stock effect, then they will raise that potential impact to the attention of the Plan Teams, SSC, and Council."

Methods to evaluate the effects of fishing on Essential Fish Habitat Proposal from the SSC subcommittee. December 2016



Subcommittee members: Liz Chilton, Bob Foy, Brandee Gerke, Anne Hallowed, Brad Harris, Dan Ito, Sandra Lowe, John Olson, Steve MacLean


2017 Stock Author Review – Pacific Ocean Perch

Core EFH (CEA) area defined as 50% cumulative distribution

Proportion of habitat reduction (November 2016)

2017 Stock Author Review – Pacific Ocean Perch

17

p-value

0.33

0.63

0.24

0.23

0.71

0.11

0.63

0.21

0.97

0.43

0.46

0.41

0.79

0.33

0.24

0.24

0.17

0.24 0.30

-0.49

-0.25

-0.56

-0.58

-0.20

-0.71

-0.25

-0.60

0.02

-0.40

-0.38

0.42

-0.14

0.56

-0.64

-0.64

0.43

0.37

0.33

Total biomass

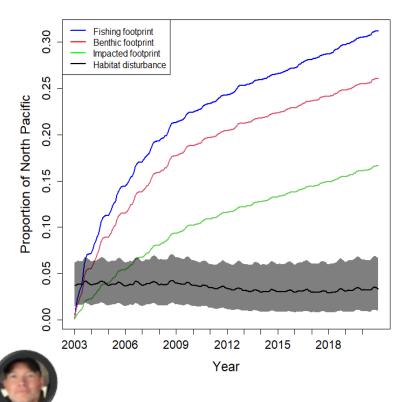
Recruitment

Conclusion of 2017 EFH 5-year Review

In April 2017, the SSC and Council concurred with species-specific EFH fishing effects reviews conducted by stock assessment authors that no stocks needed mitigation review, and that the effects of fishing on the EFH of fisheries species managed by the NPFMC are minimal and temporary (NPFMC 2017).

At the conclusion of the 2017 EFH 5-year Review, the SSC provided several recommendations related to the Fishing Effects (FE) model. In response:

- Output from the FE model is included as an indicator (habitat disturbed) in yearly Ecosystem Status Reports
- Smeltz, T.S., Harris, B., Olson, J., and Sethi, S. 2019. A seascape-scale habitat model to support management of fishing impacts on benthic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 76(10): 1836-1844.
- A sensitivity analysis is included in the discussion paper
- Core EFH (CEA) maps will be available to the public
- Updated gear descriptions, gear impact, and recovery parameters



Sensitivity Analysis

Model outputs for low/high habitat disturbance parameter scenarios and restricted (no recovery) models

Model outputs for habitat disturbance and each of the restricted models (no recovery). The grey band shows the bounds of habitat disturbance with all parameters fixed to their highest or lower values.

Model version	Dec 2020 model estimate (% of North Pacific)
Habitat disturbance (lower – upper bound)	3.4% (1.0% - 6.7%)
Fishing footprint	31%
Benthic footprint	26%
Impact footprint	17%

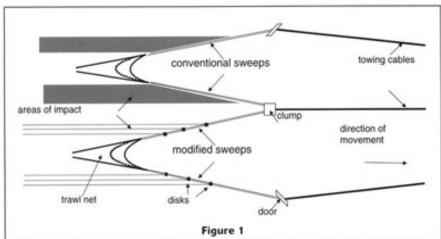
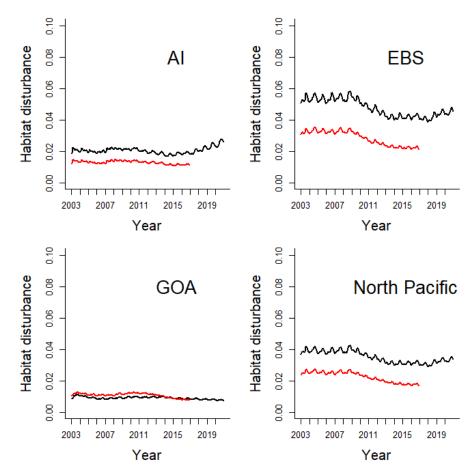


Diagram of the twin trawl system, complete with sweeps (conventional and modified), towed simultaneously behind a vessel and used to test whether raised trawl sweeps reduce flatfish herding. Actual total width was approximately 250 m. Shaded areas represent the area of contact with the seafloor.

Responses to SSC Comments for 2022 EFH 5-year Review

- 1. Run the old dataset with old parameters and new parameters to see how they contrast. Then run new data with new parameters.
 - Section 3.4, "FE model code", figure 6
- 2. Consider 2017 SSC minutes concerning the use of averages or alternatives for estimation of susceptibility and recovery.
 - Section 3.6, "Feature averaging"
- 3. Explain why sediment type must continue to be used as a proxy for habitat susceptibility and recovery rates.
 - Sections 3.2, "Habitat categorization" and 3.3, "Susceptibility and recovery"
- 4. Isolate how the new 2022 parameters affect results
 - Section 3.4, "FE model code"
- 5. Description of updated data inputs (including those to the catch in area database), new data sets not previously considered, and any methodological changes to the model or treatment of input data.
 - Section 3.1, "Fishing intensity"
- 6. Consider including a few key examples of overlays of updated 2022 SDMs and FE model results for species that are informative say ones with large differences.
 - Section 4.2, "Example 2022 FE model output with 2017/2022 SDMs"
- 7. Describe whether the EFH Team plans to use the evidence-based approach for evaluation of impacts on spawning, feeding, growth to maturity used in 2017 to evaluate impacts and provide a timeline for completion of this analysis.
 - Section 2.5.1, "Hierarchical impact assessment methods", Section 4.1 "Thresholds"


Run the old dataset with old parameters and new parameters to see how they contrast. Then run new data with new parameters

Since 2017, the model code has undergone various updates and improvements with an aim toward flexibility and efficiency.

An error in the 2017 model code transposed the susceptibility for trawl and longline gears. Because susceptibility is generally higher for trawls than longlines, impacts from trawls were underestimated and longlines overestimated.

Because the total footprint of trawling throughout the North Pacific is much greater than the footprint of longlines, the net effect of this error resulted in an underestimate of habitat disturbance, with the largest difference evident in the Bering Sea.

The differences between the outputs are due to the correction made to properly attribute susceptibility to trawl and longline, as well as updates to the Gear Table parameters.

Comparison of 2017 FE output (red lines) and 2022 FE model output (black lines) among subregions and the North Pacific at large

21

Consider 2017 SSC minutes concerning the use of averages or alternatives for estimation of susceptibility and recovery (and sediment as a proxy)

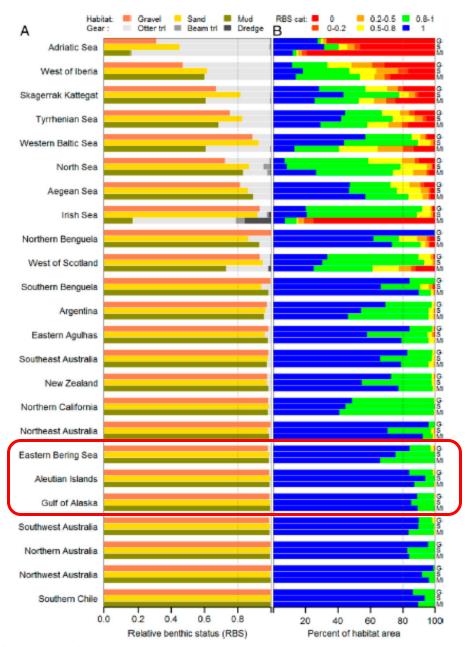
Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance

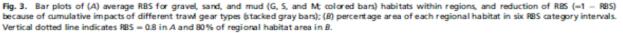
Jan Geert Hiddink,^{a,1} Simon Jennings,^{b,c,2} Marija Sciberras,^a Claire L. Szostek,^a Kathryn M. Hughes,^a Nick Ellis,^d Adriaan D. Rijnsdorp,^{e,1} Robert A. McConnaughey,^f Tessa Mazor,^d Ray Hilborn,^g Jeremy S. Collie,^h C. Roland Pitcher,^d Ricardo O. Amoroso,ⁱ Ana M. Parma,ⁱ Petri Suuronen,^j and Michel J. Kaiser^a

► Author information ► Copyright and License information Disclaimer

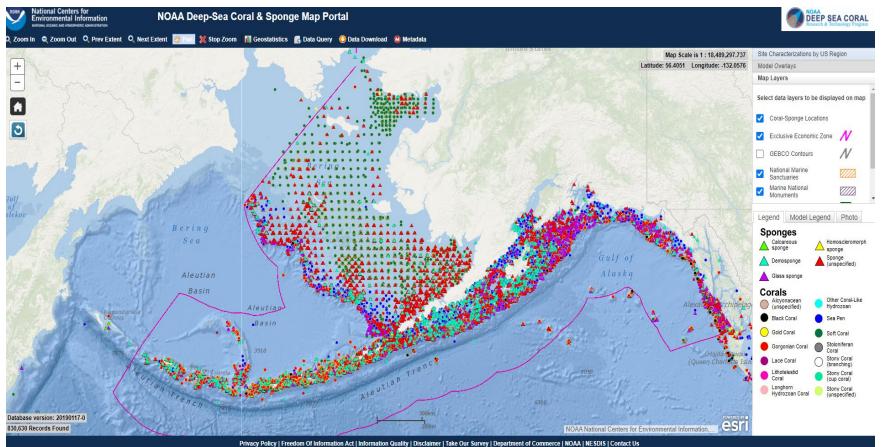
Table 4. Habitat areas and trawled areas (km²) by base 2 categories of trawl swept-area ratio (area trawled/grid-cell area): total area; area of sediment-habitat types; total swept area; and estimates of trawl footprints (which account for overlapping trawls) assuming trawling is uniform at 0.01° or randomly distributed within 0.01° grid cells

				Trawl footprint				
Swept-area ratio	Totalarea	Mud	Muddy-Sand	Sand	Gravel	Sweptarea	Uniform	Random
0	1760	34	244	892	590	0	0	0
>0-0.03125	454	9	94	234	117	9	9	8
0.0625	126	1	32	66	26	11	11	11
0.125	152	2	57	66	26	28	28	25
0.25	210	0	79	95	36	74	74	62
0.5	222	2	42	136	41	160	160	113
1	307	6	100	151	50	451	307	233
2	216	0	42	121	53	590	216	200
>4	88	0	8	53	28	481	88	88
Totals	3535	55	698	1815	967	1803	892	740


Pitcher et al 2017 Hiddink et al 2020 Rijnsdorp et al 2020 Pitcher et al 2022

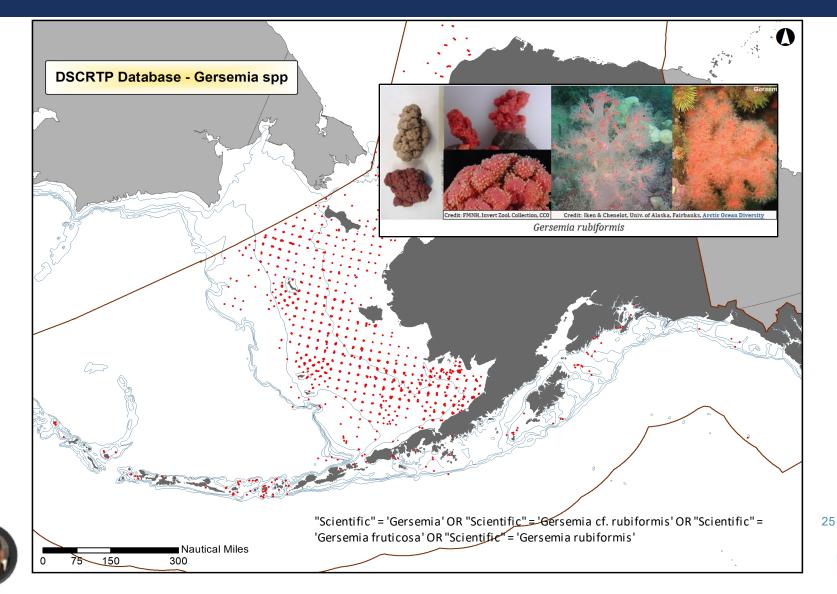


"Selective effects linked to trawling history are likely to be strongest for long-lived sessile epifauna that build biogenic reefs, such as sponges and corals. The estimates of r and T presented here are applicable to invertebrate communities living in sedimentary habitats but not biogenic habitats, because no studies of trawling impacts on biogenic habitats met the rigorous selection criteria imposed by the systematic review."

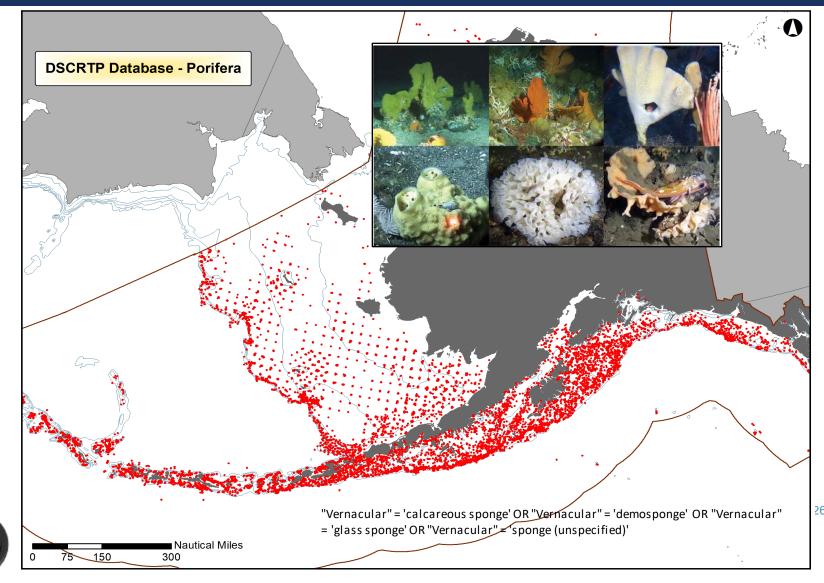


Pitcher et al 2022. Trawl impacts on the relative status of biotic communities of seabed sedimentary habitats in 24 regions worldwide.

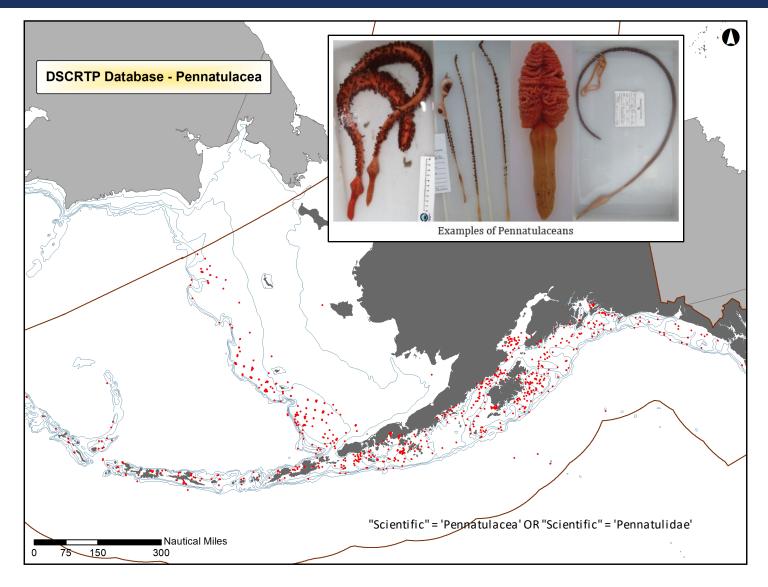
DSCRTP Data Portal



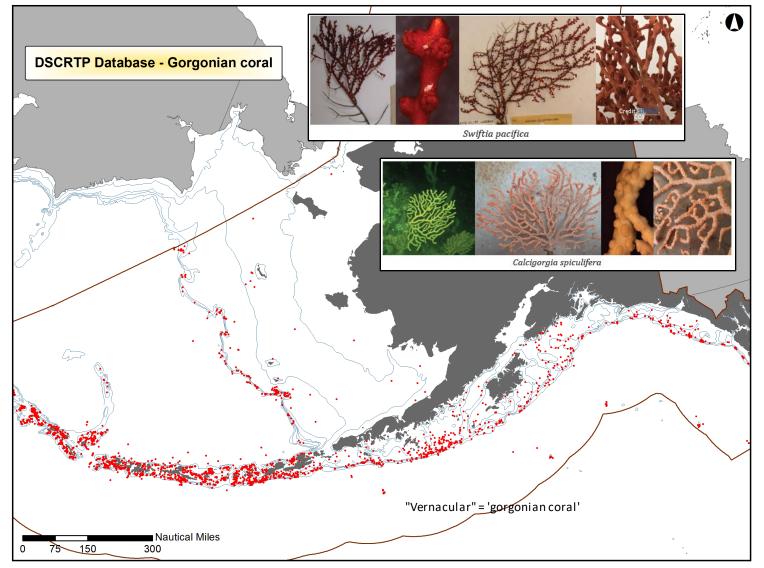
https://www.ncei.noaa.gov/maps/deep-sea-corals/mapSites.htm


Wilborn, R.E., Goddard, P., Wilborn, M.M. II (illus.), Best, M., and Rooper, C.N.. 2021. Field Guide to Corals of British Columbia, Canada, Alaska, USA, and the eastern North Pacific Ocean (Anthozoa: Octocorallia and Hexacorallia) (Hydrozoa: Anthoathecata). A complete compilation of coral identifications for the eastern North Pacific Ocean. Can. Tech. Rep. Fish. Aquat. Sci. 3433:xi + 123 p. 24

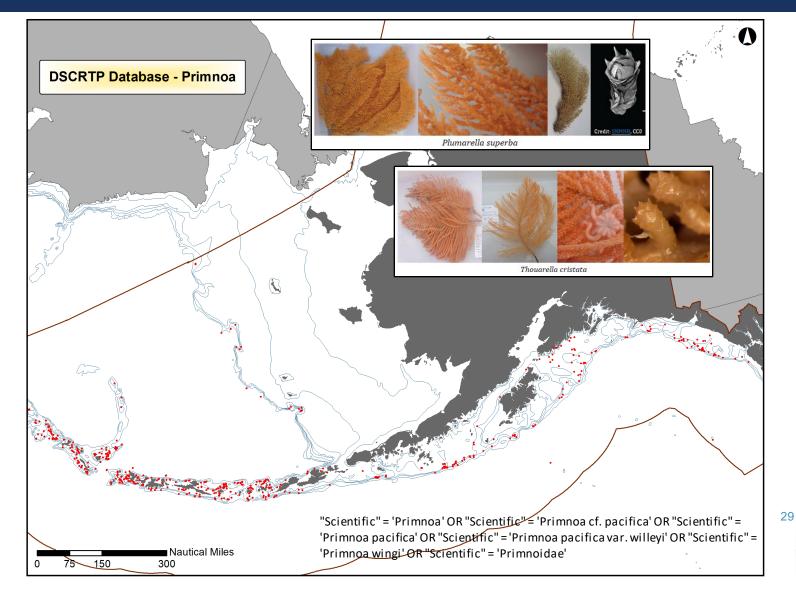
DSCRTP Data Portal – Gersemia



DSCRTP Data Portal – Sponges


DSCRTP Data Portal - Pennatulacea

27


DSCRTP Data Portal – Gorgonian corals

28

DSCRTP Data Portal – Primnoa

Description of updated data inputs (including those to the catch in area database), new data sets not previously considered, and any methodological changes to the model or treatment of input data.

Catch-in-areas data through 2020.

Updated longline, pot, & GOA pelagic rockfish trawl gear parameters

- Longline footprint Welsford et al 2014
- Pot footprint Doherty et al 2017
- GOA pelagic rockfish trawl

Exploratory analyses using unobserved fishing lines in the CIA

- Unobserved VMS records based on trips rather than individual events (7-18% CIA)
- Almost 50% of *minutes fished* or *line length* in entire VMS dataset
- Discussions with SFD staff ongoing.

Alaska Coral and Sponge Initiative 2020-2024

- GOA coral & sponge validation cruise scheduled for 2022
- "Incorporate Coral and Sponge Covariates into FE model"

Fishing Effects Model Northeast Region 2020

- Vulnerability assessment and literature review were updated
- Proposal to Develop a National Fishing Effects Database to support Fishery Management Councils Essential Fish Habitat Reviews (NEFMC, MAFMC, GARFO, AKRO, NPFMC)

Longline and pot gear parameters

Using autonomous video to estimate the bottom-contact area of longline trap gear and presence–absence of sensitive benthic habitat¹

Beau Doherty, Samuel D.N. Johnson, and Sean P. Cox

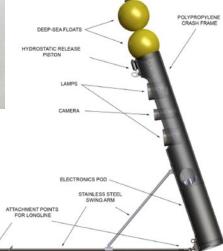
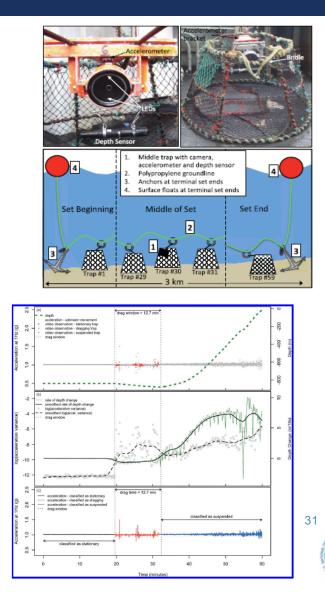
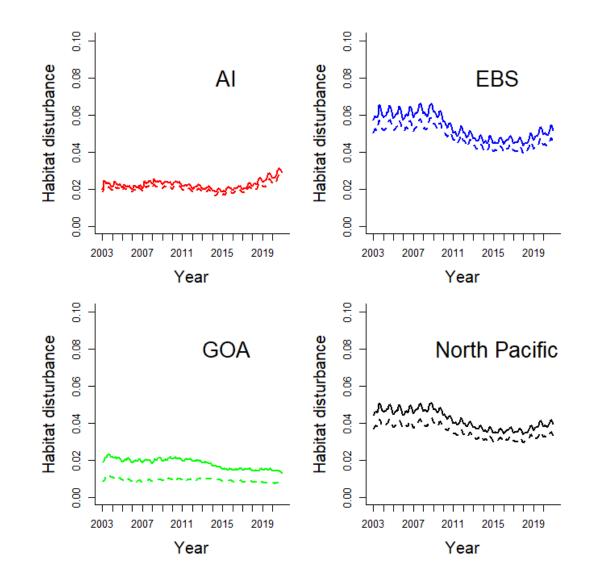



Figure A4.2. Benthic Impacts Camera System (BICS) mounted in the longline crash frame. The narrow cylindrical shape of the longline housing allows it to be deployed through a narrow shooting window, the stainless steel swing arm on the left side is attached to the longline and folds open after deployment (as shown). The floats keep the unit upright and filming down the longline during fishing and retrieval.



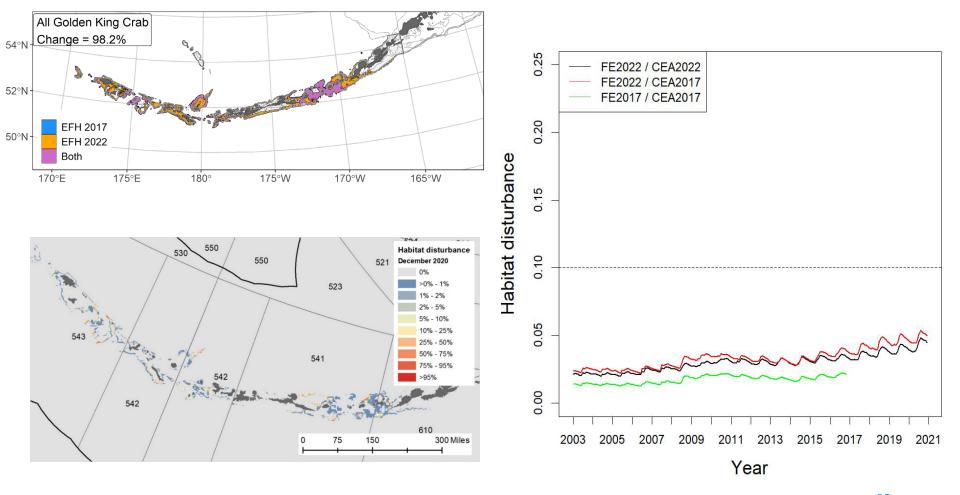
VMS - GOA unobserved fishing by gear & target

(for vessels with active VMS)							
Target	Unobs Events	Obs Events	% unobs	Target	Unobs Events	Obs Events	% unobs
	Non-pelagic Trawl				Hook and Line		
Atka mackerel	3	28	10%	Pacific cod	9,592	12,188	44%
Pollock - bottom	985	1,096	47%	Halibut	5,239	8,996	37%
Pacific cod	2,293	4,810	32%	Rockfish	25	47	35%
Deep water flatfish	34	141	19%	Other species	84	28	75%
Shallow water flat	1,330	5,298	20%	Sablefish	3,538	17,300	17%
Rockfish	387	19,172	2%	Arrowtooth	0	59	0%
Flathead sole	316	1,306	19%		Pot		
Other species	46	154	23%	Pollock - bottom	3	0	1009
Pollock - midwater	189	149	56%	Pacific cod	16,527	4,380	79%
Sablefish	10	1.615	1%	Halibut	13	11	54%
Arrowtooth	2,368	12,141	16%	Other species	15	1	94%
Rex sole	589	2,930	17%	Sablefish	945	1,321	429
	Pelagic Trawl						
Pollock - bottom	2,011	1,933	51%				
Pacific cod	23	87	21%				
Shallow water flat	7	40	15%				
Rockfish	67	3,149	2%				
Flathead sole	1	5	17%				
Other species	0	2	0%				
Pollock - midwater	10,009	8,124	55%				
Sablefish	0	88	0%				32
Arrowtooth	7	26	21%				600
							2 HUH

Incorporating unobserved VMS into FE

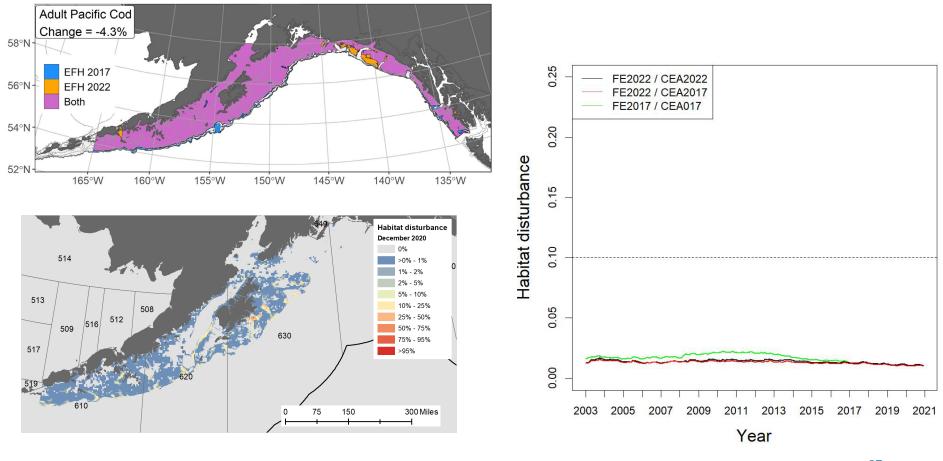
EXPLORATORY!!

Solid line – obs + unobs Dashed line – obs only


Consider including a few key examples of overlays of updated 2022 SDMs and FE model results for species that are informative – say ones with large differences.

- Aleutian Islands Golden king crab (98% larger)
- Bering Sea Arrowtooth flounder (15% smaller)
- Gulf of Alaska Pacific cod (4% smaller)


2022 Examples – Aleutian Islands Golden king crab



2022 Examples – Bering Sea Arrowtooth Flounder

2022 Examples – Gulf of Alaska Pacific cod

Describe whether the EFH Team plans to use the evidence-based approach for evaluation of impacts on spawning, feeding, growth to maturity used in 2017 to evaluate impacts and provide a timeline for completion of this analysis.

- 1. Should assessments be based on regional boundaries for the stock or species?
- 2. Is the 50% Core EFH (CEA) threshold the right one?
- 3. Continue the 10% habitat reduction threshold?
- 4. Is p-value of 0.1 reasonable?

Questions for the SSC

- Questions on the updates to FE?
- Input on the methods/thresholds to evaluate the effects of fishing developed for the 2017 EFH 5-year review?
- Potential timeline for stock author review Spring 2022 for a June 2022 SSC presentation.

Questions that may be outside the scope of the Effects of Fishing analysis

- Separating habitatissues from bycatch or unobserved mortality issues
- Efficacy of closed areas

Additional slides

Equation to convert mean recovery ($\overline{\tau}$) to 5% - 95% recovery (τ^*):

 $\tau^* = \bar{\tau} \left[\log(1 - 0.05) - \log(1 - 0.95) \right]$

$\bar{\tau}$ (mean recovery)	τ* (5% - 95% recovery)
1 year	2.9 years
2 years	5.9 years
5 years	14.7 years
10 years	29.4 years
50 years	147.2 years

Feature averaging

During previous NPFMC meetings, both the SSC and public testimony expressed interest in a clearer explanation of feature averaging. To illustrate and clarify, we provide this example:

The Fishing Effects model computes the amount recovery each time step based on one of five sediment-based habitat types. To calculate an average recovery time for each sediment class, a recovery time (τ , in years) was first randomly selected for each habitat feature based on its score for that sediment. The mean of these recovery times was then calculated over all habitat features associated with the sediment class. The inverse of this averaged recovery time was then used in the following equation to convert the time to recovery into a proportional recovery (ρ) for each time step, $\rho = 1 - e - 1/\tau$

In practice, τ is multiplied by twelve before conversion to ρ to convert it to months, which is the time step of the FE model. This process was repeated for each grid cell at a monthly time step. The following example illustrates feature averaging for mud and deep/rocky sediments. Simplified table of recovery scores

Recovery codes:	Habitat feature	Mud	Sand	Deep/rocky
0: < 1 year	Biogenic	0	0	
1: 1 - 2 years	depression			
2: 2 - 5 years	Anemones,	2	2	
3: 5 - 10 years	cerianthid			
4: 10 – 50 years	burrowing			
4. 10 – 50 years	Mollusks, epifaunal	3	3	3
	bivalve, Modiolus			
	modiolus			
	Long-lived species			4

Feature averaging 2

To calculate monthly recovery on mud in one grid cell for one specific time step:

Habitat feature	Mud score (range)	Random selection from range (τ)
Biogenic depression	0 (0 -1 years)	0.3 years
Anemones, cerianthid burrowing	2 (2 – 5 years)	4.1 years
Mollusks, epifaunal bivalve, Modiolus	3 (5 – 10 year)	6.3 years
modiolus		
Long-lived species	Not present	
		mean = 3.57 years

$$\begin{split} \tau &= 3.57 \; years = 42.8 \; months \\ \tilde{\rho} &= 1 - e^{-\frac{1}{42.8}} = 0.023 = 2.3\% \end{split}$$

Thus, on the proportion of mud sediment within this grid cell and time step, 2.3% of the disturbed habitat would recover (<u>i.e.</u> convert to an undisturbed state in the model) for the next time step.

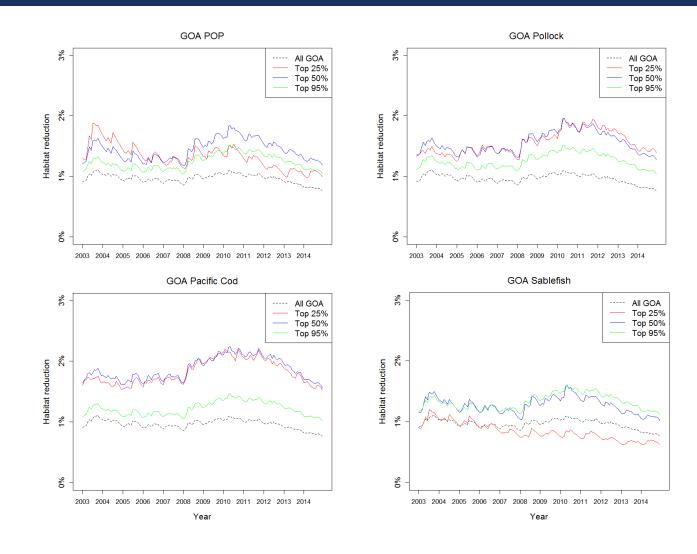
To calculate monthly recovery on deep/rocky sediment in one grid cell for one specific time step using the simplified table:

Habitat feature	Deep/rocky score (range)	Random selection from range (τ)
Biogenic depression	Not present	
Anemones, cerianthid burrowing	Not present	
Mollusks, epifaunal bivalve, Modiolus	3 (5 – 10)	5.1 years
modiolus		
Long-lived species	4 (10 -50)	39.8 years
		mean = 22.5 years

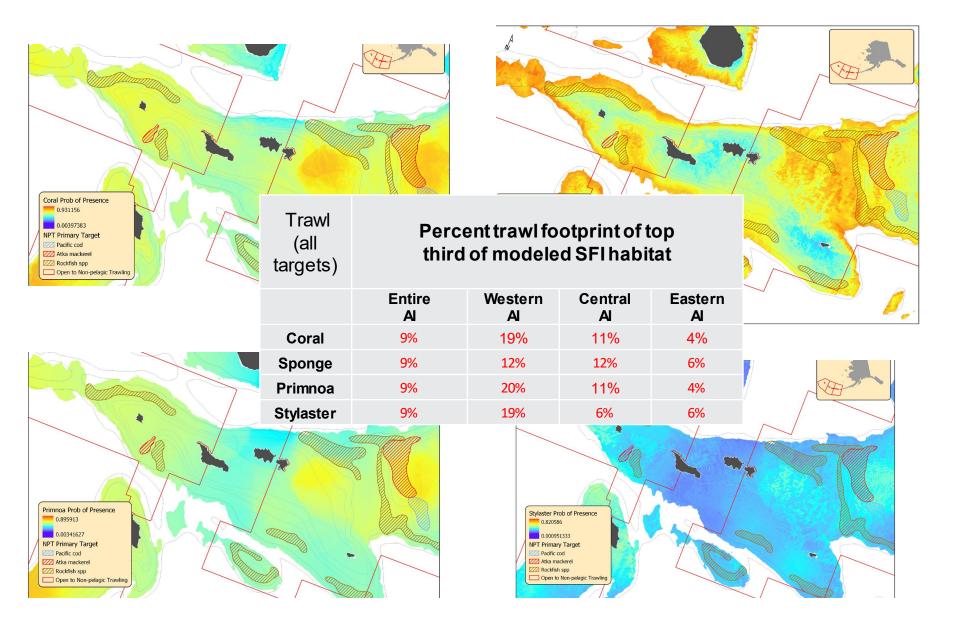
$$\begin{split} \tau &= 22.5 \; years = 270 \; months \\ \tilde{\rho} &= 1 - e^{-1/270} = 0.0037 = 0.37\% \end{split}$$

Thus, on the proportion of deep/rocky sediment within this grid cell and time step, 0.37% of the disturbed habitat would recover (<u>i.e.</u> convert to an undisturbed state in the model) for the next time step.

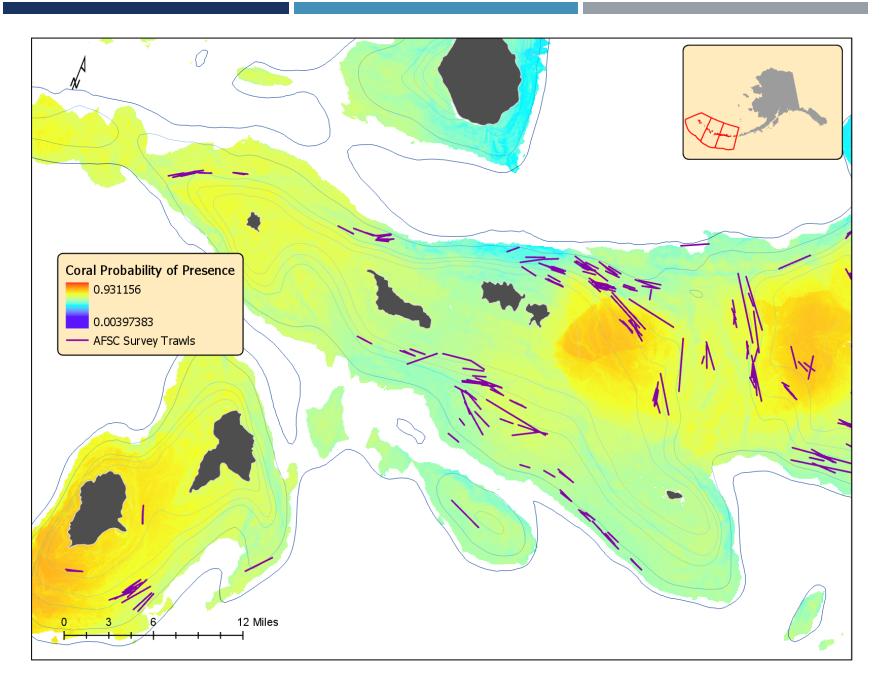
Future application and research needs


"To date, there has been very little effort in any region to develop objective criteria to assess the effects of fishing on EFH, or to consider how those habitat impacts affect fishery stocks. The FE model that was developed for the 2016 review of EFH at the Council was a continuation and modification of the Swept Area Seafloor Impact (SASI) model developed for the New England Fishery Management Council.

Similarly, the Fishing Effects subcommittee felt that the methods and criteria developed for the Council could be applied in other areas of the world, with appropriate modifications to address their local concerns and species. The subcommittee recognized that data limitations remain, particularly links between specific habitat impacts and population level effects on fish stocks. In order to continue development of these methods and criteria to evaluate the impacts of fishing on EFH, the subcommittee recommends that research should continue to better elucidate those linkages."


Methods to evaluate the effects of fishing on Essential Fish Habitat Proposal from the SSC subcommittee. December 2016

50% threshold



Preliminary Results – Summary

Survey Trawl Locations & Coral Model Output

