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Methods overview5

We used an integrated population model to estimate variation in mortality over time for snow crab in the6

eastern Bering Sea and generalized additive models (GAMs) to relate the estimated variation in mortality7

to potential stressors in the environment. The population dynamics model was fit to abundance and size8

composition data from the National Marine Fisheries Service (NMFS) summer bottom trawl survey in the9

eastern Bering Sea shelf to estimate total mortality by maturity state and year for male snow crab. We then10

developed indices for temperature occupied, disease prevalance, cannibalism, and density dependent effects11

from the NMFS survey to test as covariates in GAMs. Indices for fishery related effects were collated from12

fisheries statistics from the Alaska Department of Fish and Wildlife and also included in the GAMs. Below13

we describe each of these components, discuss the rationale behind our modeling decisions, and provide14

sensitivities and simulation tests of our models.15

Population dynamics model16

The population dynamics model presented here incorporates the best available information on relevant17

population processes to estimate total mortality for male snow crab on the eastern Bering Sea shelf and is18

similar in structure to the model used to assess eastern Bering Sea snow crab for management (Szuwalski,19

2021). The model tracked numbers of male crab at size at maturity state over time with size bins ranging20

from 30-95 mm carapace width with 5 mm bin widths. Only male crab were modeled because male and21

female crab appear to have somewhat different dynamics and the male crab in the modeled size range are22

better selected by the survey gear (Szuwalski, 2021). Snow crab are sexually dimorphic, with male snow23

crab growing to nearly twice the size of females, which accounts for the better selection in the survey.24

Only crab smaller than 95 mm were modeled for two reasons: 1) to attempt to isolate the effect of the25

directed fishery (crabs of >101 mm carapace width are targeted in the fishery; discussed further below)26

and 2) almost all of the crab that disappeared since 2018 are in this size range. The population dynamics27

model operates on a half year time step, starting in July at the time of the NMFS survey. The fishery is28

assumed to occur in February. Total mortality (Z) is estimated by year (y) and maturity state (m). Other29

estimated parameters include the initial numbers at size by maturity state, yearly log recruitments, a vector30

of scalars that determine the proportions of estimated recruitment split into the first two size bins, and a31

variance component for the penalty on total mortality. Parameters determining growth, maturity, and survey32

selectivity were estimated outside of the model and specified when estimating mortality and catchability.33

Mortality is the only population process that occurs in the first half of a given year:34

Nt=y+0.5,s,m = Nt=y,s,me−Zt,s,m/2 (1)

Growth occurs at the beginning of the second half of the year for immature crab and is represented in the35

model by multiplying the vector of immature crab at size by a size-transition matrix Xs,s′ that defines the36
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size to which crab grow given an initial size. Snow crab are observed to undergo a ‘terminal molt’ to maturity37

after which growth ceases (Dawe et al., 1991). Accordingly, all immature crab are assumed to molt and no38

mature crab molt in our model. The newly molted crab are assigned to a maturity state based on observed39

ogives of the proportion of mature new shell males by size calculated from chelae height measured in the40

NMFS survey data (Otto, 1998), which varies over time (ρy,s; Figure 4). The average probability of having41

undergone terminal molt is used in years during which data were not collected. This process results in two42

temporary vectors of numbers at size:43

nt=y+0.5,s,m=1 = ρy,sXs,s′Nt=y+0.5,s,m=1 (2)
44

nt=y+0.5,s,m=2 = (1 − ρy,s)Xs,s′Nt=y+0.5,s,m=2 (3)

The size transition matrix Xs,s′ was constructed using growth increment data collected over several years45

(see Szuwalski, 2021 for a summary) to estimate a linear relationship pre- and post-molt carapace width46

(Figure 5), (Ŵ pre
s,w and Ŵ post

s,w , respectively) and the variability around that relationship was characterized by47

a discretized and renormalized normal distribution with a size-varying standard deviation, Ys,w,w’ (Figure 5).48

Xs,w,w′ = Ys,w,w′∑
w′ Ys,w,w′

(4)

Ys,w,w′ = (∆w,w′)
ˆLs,w−(W̄w−2.5)

βs (5)

L̂post
s,w = αs + βs,1hatW pre

s,w (6)

∆w,w′ = L̄w′ + 2.5 − Ww (7)

It is important to note that crab can ‘outgrow’ this model, which is represented by the pre-molt-carapace49

widths (e.g. 87.5 and 92.5 mm carapace width in Figure 5) that have low probability of molting to any of50

the sizes that are included in the population dynamics model.51

Recruitment by year, τy, was estimated as a vector in log space and added to the first two size of classes of52

immature crab based on another estimated vector δy that determines the proportion allocated to each size53

bin.54

nt=y+0.5,s=1,m=1 = nt=y+0.5,s,m=1 + δyeτ
y (8)

55
nt=y+0.5,s=2,m=1 = nt=y+0.5,s,m=1 + (1 − δy)eτ

y (9)

Finally, the last half of the year of mortality is applied to the population after growth, maturity, and56

recruitment occurs. Note that this allows a crab to experience two different mortalities within a given year57

as it undergoes terminal molt.58

Nt=y+1,s,m=1 = nt=y+0.5,s,m=1e−Zt,s,m/2 (10)
59

Nt=y+1,s,m=2 = (Nt=y+0.5,s,m=2 + nt=y+0.5,s,m=2)e−Zt,s,m/2 (11)
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Survey selectivity60

The observed numbers of crab at size by year in the NMFS survey reflect the ability of the trawl gear to61

capture the crab, also known as ‘selectivity’. The selectivity of trawl gear can change according to size,62

and consequently needs to be accounted for in the population dynamics model when fitting to the survey63

data. Values for survey selectivity at size were specified using data from experimental trawls conducted64

by the Bering Sea Fisheries Research Foundation in collaboration with the NMFS summer survey. The65

experimental trawls were performed at the same time and location as the NMFS summer survey tows to66

evaluate the efficiency of the NMFS survey trawl gear at capturing snow crab (Somerton et al., 2013).67

The nephrops gear used by the BSFRF was assumed to capture all crab in its path given strong bottom68

contact. The resulting area-swept estimates of numbers of crab at size from the BSFRF and NMFS surveys69

(N̂y,s,NMF S and N̂y,s,NMF S , respectively) can be used to infer the selectivity of the NMFS gear in year y70

as:71

Sy,NMF S =
ˆNy,s,NMF S

N̂y,s,BSF RF

(12)

The experimental trawls captured snow crab in the years 2010, 2011, 2016, 2017, and 2018, but the spatial72

foot print and sample sizes varied by year (Figure 6). The calculated selectivities by size and by year were73

fairly consistent for snow crab of carapace widths 40 - 95 mm, but the signal was less consistent for crab74

larger than ~100 mm carapace width (Figure 7). The selectivity of large crab determines the estimated scale75

of the population in a population dynamics models, but the information we have on selectivity of is poor and76

different assumptions about selectivity lead to very different inference about the stock (Szuwalski, 2021b).77

The lack of clear information on the scale of the population exploited by the fishery is one of the key reasons78

we used the range of sizes included in this model and excluded the directed fishery data from the analysis. A79

GAM was fit through the estimates of selectivity and the resulting estimates by size were directly specified80

in the population dynamics model.81

‘Catchability’ represents the fraction of the population available to the survey gear (either as a result of82

spatial mis-match or the inability of the gear to come in contact with the animals as a result of burrowing83

or hiding in untrawlable habitat). The capability for modeling time-varying catchability was built into the84

model in the form of a vector of parameters equal to the length of the time series of data. When time-85

varying catchability was estimated, the yearly catchability parameters were used to scale the selectivity86

curve described above up or down.87

Objective function88

The objective function for the population dynamics model consists of likelihood components and penalty89

components that are summed and minimized in log space to estimate parameters within the model. Several90

data sources were fit to using the following likelihoods. Observed size composition data for immature and91

mature males were fit using multinomial likelihoods and were implemented in the form:92

Lx = λx

∑
y

Nx,y

∑
l

pobs
x,y,lln(p̂x,y,l/pobs

x,y,l) (13)

Lx was the likelihood associated with data component x, where λx represented an optional additional weight-93

ing factor for the likelihood, Nx,y was the sample sizes for the likelihood, pobs
x,y,l was the observed proportion94

in size bin l during year y for data component x, and p̂x,y,l was the predicted proportion in size bin l during95

year y for data component x. Sample sizes were input as 100, which is the value currently used in the stock96

assessment (Szuwalski, 2021).97

Observed indices of abundance for immature and mature males were fit with log normal likelihoods imple-98

mented in the form:99
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Lx = λx

∑
y

(ln(Îx,y) − ln(Ix,y))2

2(ln(CV 2
x,y + 1)) (14)

Lx was the contribution to the objective function of data component x, λx was any additional weighting100

applied to the component, Îx,y was the predicted value of quantity I from data component x during year y,101

Ix,y was the observed value of quantity I from data component x during year y and CVx,y was the coefficient102

of variation for data component x during year y.103

Penalties and priors104

Smoothing penalties were placed on estimated vectors of deviations for immature and mature natural mor-105

tality and immature and mature catchability. A prior value of 0.27 is used for the average natural mortality106

based on assumed maximum age of 20 and Hamel’s (2015) empirical analysis of life history correlates with107

natural mortality. The priors used for catchability were derived from the selectivity experiments described108

above. Penalties were implemented using normal likelihoods on the second differences of the vector. A109

separate normal prior was placed on the estimated mean value of immature and mature mortality in the110

form:111

Lx = λx

∑
y

((Îx,y) − (Ix,y))2

CV 2
x,y

(15)

Lx was the contribution to the objective function of data component x, λx was any additional weighting112

applied to the component, Îx,y was the predicted value of quantity I from data component x during year y,113

Ix,y was the observed value of quantity I from data component x during year y and CVx,y was the coefficient114

of variation for data component x during year y.115

Population dynamics model sensitivities116

Modeling decisions are necessarily made in the process of writing population dynamics models and it is117

possible for these decisions to influence the outcome of an analysis. Within the context of our model, these118

decisions include what processes to allow to vary over time, the weights assigned to different data sources119

and portions of the objective function, which parameters to place priors or penalties on, and what those120

priors or penalties should be. We ran several sensitivity analyses to understand the implications of these121

modeling decisions on the outcome of our analysis.122

Does allowing mortality or catchability to vary over time improve model fits?123

Catchability and mortality are somewhat confounded within population dynamics models (Thompson, 1994).124

Fewer crab observed in a given year can be attributed to either crab dying or by crab moving out of the125

surveyed area either by walking out of the boundaries or burying themselves into the substrate. At the same126

time, it is also clear that catchability and mortality likely vary over time in reality in spite of the fact that127

they are often assumed to be time-invariant in population dynamics models (Johnson et al., 2014). Somerton128

et al. (2013) showed that catchability varied somewhat by substrate and depth for snow crab in the EBS.129

The spatial distribution of snow crab varies over time and substrate and depth vary over space, so it follows130

that catchability should also vary over time.131

We started exploring the impacts of including time-variation in mortality and catchability on model output132

by fitting a model with no time-variation in mortality or catchability. Then we compared the output of133

this model to models that allow time-variation in mortality, catchability, and both processes simultaneously134

(Figure 8 & Figure 9). The model with no time-variation in mortality or catchability was able to capture the135
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general trend in immature and mature survey abundance solely through estimating variability in recruitment.136

Allowing time-variation in catchability improved the fits to immature survey abundances more than time-137

varying mortality, but time-variation in either process improved fits in a similar manner for mature survey138

abundances. Mature size composition data were fit similarly for all models, but immature size composition139

data were better fit by the models that allowed time-varying catchability (Figure 8). Part of the reason140

this difference in fits to immature size composition data occurs is the variability in the first several size bins141

resulting from the poor selectivity of the survey for small animals. Sometimes the peaks seen in larger size142

classes are reflected in the preceding years’ data for the smallest size classes, sometimes those peaks are not143

reflected (compare Figure 10 to Figure 11). As a consequence, positive residuals occur in the smallest size144

classes when a pseudocohort is consistently seen in large size classes, but not observed in the smallest size145

bins (e.g. 1991 vs. 1992; 1997 vs 1998).146

The model without time-variation in mortality or catchability explained 67% of the deviation in the abun-147

dance indices, time-varying mortality explained 77%, time-varying catchability explained 94%, and both148

processes varying explained 99% of the historical deviance. Model selection based on information criteria149

(e.g. AIC; Akaike, 1974) are often used to identify a model within a suite of models that most parsimoniously150

fits the data. Adding time-variation in natural mortality or catchability alone improved model fits parsimo-151

niously (AIC of 3434.15 for base model vs. 1593.836 and 1321.486 for time-varying mortality and catchability,152

respectively). However, adding time-variation in both processes resulted in a higher AIC (1449.275) than153

implementing time-variation in catchability, owing to the large number of parameters estimated. While154

catchability and mortality are somewhat confounded, catchability is also confounded with other sorts of155

error (e.g. observation) and allowing a relatively unconstrained estimation of catchability over time resulted156

in over-fitting the data, the consequences of which will be seen in simulations below. Even with this paring of157

potential models, there are several assumptions that could influence the output of our models. The following158

sensitivities are aimed at exploring the impacts of those assumptions on model output.159

How well can the model estimate mortality and selectivity with simulated data?160

One of the most essential exercises to perform with a population dynamics model before using its output is161

to perform a ‘self-test’ in which data are simulated from the population dynamics model with appropriate162

error and then fit to with the model. The goal of this test is to determine whether or not a model can return163

the parameter values underlying the simulated data with the available quantity and quality of data. For our164

analysis, the ability of the model to estimate mortality and catchability are of particular interest because165

they are candidates for use as input into GAMs to attempt to link the estimates to environmental stressors.166

Recruitment is also of interest because of its confounding with the other processes.167

Log-normal error was added to the true underlying abundance from the simulation model with three different168

coefficients of variation: 0.01, 0.10, and 0.30. Simulated data sets were generated 100 times under each169

observation error scenario and the population dynamics models were fit to them. Two population dynamics170

models were fit: one in which time-varying natural mortality was estimated and one in which time-varying171

natural mortality and time-varying catchability were estimated. Estimates of mortality were closer to the172

true underlying values than estimates of catchability (compare Figure 12 to Figure 13). Mature mortality was173

better estimated than immature mortality regardless of data quality or model configuration. The correlation174

between estimated and simulated mortality was 0.65 and 0.96 for immature and mature mortality for the175

0.01 observation error scenarios, respectively. The ability of the models to estimate mortality became more176

similar as data quality decreased. Overall, the model was best able to estimate mature mortality and this is177

likely a consequence of its separation from estimated recruitment in time. In general, estimates of catchability178

for both maturity states were unreliable.179

As a result of these simulation analyses, two modeling decisions arose. First, we used estimated variation in180

mortality from models that only estimate time-variation in mortality because the estimates of mortality from181

models that estimated time-variation in both mortality and catchabilty were less reliable. This precludes182

attempts to identify relationships between estimated catchability and environmental variables. Second, the183

inability of the model to capture the scale of the population (Figure 14) underscores the need to relate184

mortality to the environmental covariates outside of the model, rather than attempting to build them into185
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the model (similar to Dorn and Barnes, 2022). The covariates described below are indices of a particular186

environmental stressor, not absolute quantities that could provide scale to the model.187

How do the assumptions about weighting and priors influence the estimated quantities?188

Some aspects of the model that may influence the outcome of the fitting are specified by the user with no189

clear ‘correct’ value. These include the weights assigned to the size composition data, some priors placed190

on population processes, and the weights assigned to the smoothness penalties. We performed sensitivity191

analyses for these parameters to check how different specifications changed the fits to the data and the192

estimates of mortality and catchability. We input a range of values for the size composition weights (25, 50,193

100), the prior on the mean natural mortality in log space (-1.6, -1.2, -0.8), the input standard deviation for194

the penalties on natural mortality (0.01, 0.1, 0.2) and the smoothness penalty on the estimated time series’195

of mortalities and catchabilities (0.001, 0.1, 0.5, 0.1).196

Differences among sensitivity scenarios resulted in very small changes in the fits to the data (Figure 15), but197

larger changes in estimated mortalities and catchabilities (Figure 16). The smoothness penalty placed on198

mortality over time appeared to be the largest driver of changes in estimates of M and q, so we looked at a199

wider range of smoothness penalties (i.e. 0.001, 0.1, 0.25, 0.5, 1, 5, 10, 1000). Trajectories of mortalities were200

roughly preserved across this range. The prior on mean natural mortality predictably scaled the estimated201

time series up or down. The best available information suggests natural mortality should be approximately202

0.27 given an assumed (but based on a range of studies; see Szuwalski, 2021 for a summary) maximum203

age of 20 years for wild snow crab. Based on these analyses, we elected to use small smoothing penalties204

because there is no evidence to suggest that mortality should be particularly smooth from year to year.205

These analyses also underscore the fact that the scale of the population is difficult to estimate with the206

data available and the need to relate mortality to the environmental covariates outside of the population207

dynamics model. This likely comes from the fact that recruitment and immature mortality are confounded208

(i.e. fewer immature crab in a given year can be because of increased immature mortality or because of lower209

recruitment) and the lack of data (like removals) given in an absolute (rather than relative) metric.210

Covariate construction211

A wide range of factors could potentially influence mortality of snow crab on the eastern Bering Sea shelf,212

including temperature, predation, disease, cannibalism, and fisheries effects. The NMFS summer trawl213

survey provides a rich spatio-temporal data set to develop time series of temperature occupied, predation,214

disease, and cannibalism. The fisheries-dependent observer data provide spatio-temporal information on215

bycatch.216

Currently, estimating spatially-explicit, time-varying mortality is not computationally feasible, nor are data217

on movement available to inform such a model. Consequently, our analysis aggregates the spatial data218

for snow crab into time-series. The end goal is to use these time-series in predictive models to identify219

relationships between estimated mortality and stressors, so attention has to be paid to creating appropriate220

comparisons. For example, a predation index needs to consider not only the total consumption of crab by221

cod, but also the total number of crab in the ocean of the size that can be consumed by cod to be comparable222

to changes in mortality rates (discussed more below).223

Another important point for consideration in covariate construction is the estimation of mortality by maturity224

state. Snow crab in the EBS undergo an ontogenetic migration in which juvenile crab settle on the northeast225

portion of the shelf after their pelagic phase, then migrate southwest into deeper and (usually) warmer waters226

(Ernst et al., 2005; Parada et al., 2010). This means that the conditions and stressors felt by immature227

crab can be different than the stressors felt by mature crab. To address this issue, the spatial data sets228

for temperature, disease, and cannibalism were split based on the size above which half of the population229

was mature. The size at which more than half of the population is mature changes by year, depending on230

recruitment dynamics and other demographic processes (Figure 17). After the survey data were split at the231

50% at maturity size, time series of maturity-specific environmental stressors (Figure 18) were created as232

described below.233
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Temperature234

Temperature is one of the key physical variables that structures the benthic ecosystem of the EBS (Mueter235

and Litzow, 2088). The cold pool, a mass of water <2 degrees Celsius, acts as a barrier to species interaction236

based on temperature preferences of different species. Snow crab are a stenothermic species, preferring cold237

water and juvenile snow crab in particular are rarely found outside of the cold pool (Dionne, 2003). The238

cold pool is directly related to the winter ice extent in the Bering Sea and has varied dramatically over time239

as the ecosystem moves between cool and warm stanzas (e.g. 2006-2010 vs. 2014-2019; Figure 1b of the main240

text and Figure 19). As the cold pool changes from year to year, so does the spatial distribution of snow crab241

(Figure 20). The ontogenetic migration of snow crab results in crab of different sizes and maturity states242

experiencing different temperatures in a given year (Figure 21). The ‘temperature occupied’ for different243

sizes of crab by year Ts,y was calculated here as an average of the observed bottom temperatures at the244

stations at which crab of a given size were captured ti, weighted by the area-swept density of crab at a given245

station di:246

Ts,y =
∑

i diti∑
i di

(16)

The resulting time series of temperatures occupied by size were then split by maturity state by identifying a247

cutoff beyond which half of the population was mature and aggregating the temperatures above and below248

the cutoff to represent immature and mature temperature occupied (Figure 22).249

Predation250

Pacific cod (Gadus macrocephalus) are the largest predator of snow crab based on stomach content data251

collected in the NMFS summer bottom trawl survey (Long and Livingston, 1998). Immature crab under252

the size of 55 mm carapace width are the primary sizes consumed by cod in the Bering Sea (Burgos et al.,253

2010). Changes in the cold pool have altered the interaction between snow crab and Pacific cod over time.254

Decreases in the size of the cold pool coincide with more northerly positions of the centroids of abundance of255

cod (e.g. 2003 and 2018-2019; Figure 23 & Figure 24). This increased interaction coincided with increased256

numbers of crab consumed by cod in the last several years (Figure 25). However, this period of time also257

coincided with the appearance of the largest pseudo-cohort of snow crab ever seen in the Bering Sea. Given258

the generalist nature of Pacific cod, one would expect to see an increase in the amount of crab consumed by259

cod during this period of time even if there weren’t differences in the interactions between the species as a260

result of changes in the cold pool. Further, a large fraction of the missing crab from the recent collapse were261

not of the sizes typically eaten by cod (Figure 26). To evaluate the possibility cod consumption has influenced262

the mortality of snow crab over time, the relative impact of consumption with respect to the population size263

must be considered. Consequently, predation indices were calculated for mature and immature animals by264

year Pm,y by calculating the ratio of the extrapolated biomass of crab consumed by cod to the biomass of265

the estimated numbers of crab by maturity state, Ny,m,s ∗ ws:266

Pm,y = cody,m∑
s Ny,m,s ∗ ws

(17)

The exact amount of crab eaten cannot be calculated from the diet data because the diet data are a snap-267

shot of the consumption at one point during the year and consumption would be expected to change with268

spatial overlap and temperature-driven changes in metabolism occurring throughout the year. Consequently,269

removals due to predation cannot be directly incorporated into the model as fishery removals might be. How-270

ever, the predation index developed here represents the best available information on the relative impact of271

cod predation on snow crab mortality for use in correlative models like the GAMs below.272
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Disease273

Bitter crab syndrome is a fatal disease in snow crab caused by a parasitic dinoflagellate. The presence of274

disease is recorded in the NMFS summer trawl survey data for the subset of crab that are individually275

measured based on a visual inspection. Portions of the shells of diseased crab present as a milky white,276

which is different from their usual more translucent state. The spatial distribution of bitter crab disease is277

predominantly on the northeastern shelf where smaller immature animals are found (Figure 27). For this278

analysis, disease prevalence was calculated simply as the number of infected individuals identified in the279

survey divided by the total number of individuals caught in the survey (Figure 18).280

Cannibalism281

Cannibalism has been proposed as a potential driver of the dynamics of snow crab in eastern Canada (Lovrich282

et al., 1997). In laboratory studies, crab smaller than 55 mm carapace width were at high risk of being283

cannibalized when housed with larger crab (Lovrich et al., 1997). Crab larger than 55 mm carapace width284

were much less likely to be cannibalized, but the frequency of injury could be high. Here we developed an285

index of cannibalism based on two aspects of the spatial distribution of snow crab: the overlap of crab smaller286

than 55 mm carapace width with crab larger than 95 mm carapace width (Figure 28) and the density of287

crab larger than 95 mm carapace width within the shared space. The proportion of 55 mm carapace width288

crab in the overlapping area represents the ‘exposure’ of the smaller population to cannibalism and the289

density of crab larger than 95 mm carapace width within that area represents the potential ‘intensity’ of290

cannibalism in the shared area. We calculated an index of cannibalism over time as the product of exposure291

and intensity. Consequently, a scenario in which there was large overlap, but low densities of large crab292

would result in a low cannibalism index value. Similarly, a scenario in which there was low overlap, but high293

densities would result in a low cannibalism index value. This produces an index that is comparable with294

estimated mortality–a higher cannibalism index would be expected to be associated with higher mortality if295

cannibalism is a strong driver of mortality in the size ranges of crabs modeled here.296

The proportion of 55 mm carapace width crab overlapping with larger than 95 mm carapace width crab was297

calculated by finding the intersection of the station IDs at which at least one crab of both size classes was298

observed. The density of crab larger than 95 mm carapace width was calculated as the number of >95 mm299

carapace width crab observed at those stations multiplied by the area swept. This exercise was also done300

by 5 mm size bins to show the overlap of small crab of different sizes with large crab (Figure 29). The final301

index aggregated all crab smaller than 55 mm carapace width (Figure 30).302

Fisheries data303

Snow crab are caught both in a directed fishery (i.e. a fishery aimed at capturing snow crab) and non-directed304

fisheries (i.e. fisheries with targets other than snow crab). In the directed fishery, under-sized and/or dirty305

shelled crab are often discarded. Snow crab are discarded from non-directed fisheries using a variety of306

gear types (including trawl, pots, hook-and-line) and targeting a variety of species (e.g. Pacific cod, walleye307

pollock, and yellowfin sole) that operate over a wide fraction of the Bering Sea shelf (Figure 31). Figure 31 is308

plotted in log space, so it appears that the bycatch is spread widely over the shelf, but in normal space, the309

bycatch is more concentrated (e.g. Figure 32). The location of the centroids of the bycatch have moved over310

time and increases in latitude correspond with warm years in which reduced ice extent allowed for fishing311

farther north (Figure 33). Bycatch in groundfish trawl fisheries are by far the largest sources of bycatch312

mortality (Figure 34). Data on discards and bycatch of snow crab are collected by at-sea observers on fishing313

boats and the percent observer coverage ranges from 10% to 100%, depending on the fishery. Indices of the314

relative mortality imposed by fisheries discards and bycatch were calculated here as the ratio of the observed315

numbers of crab discarded or bycaught in a given year divided by the estimated population numbers in a316

given year. Only discard mortality is considered for the directed fishery in our models because the range of317

sizes modeled exclude the largest males, which are the targets of the commercial fishery for snow crab.318
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Generalized additive models319

Generalized additive models (GAMs) were used in the R programming language (package mgcv; Wood,320

2011) to relate changes estimated mortality by maturity state and year, mp,y to environmental covariates321

by maturity state, ϕm,y, because of their flexibility in fitting potential non-linear relationships. Models were322

first fitted in which all relevant covariates were included in the model of the form:323

mp,y = s(ϕm,y) + ϵi (18)

where ‘s()’ is a smoothing function based on thin-plate splines, ϕ is a matrix of environmental covariates324

scaled to mean 0 and standard deviation 1, and ϵ is normally distributed error. The number of knots allowed325

in the thin-plate splines were restricted to 3 given the relatively short time series and number of potential326

stressors. Significance of covariates for the full models can be seen in Table 1 and Table 2 and the resulting327

smooths in Figure 35 and Figure 36. Model diagnostics were acceptable given relatively short time series328

(Figure 37 & Figure 38). Leave-one out cross validation was performed for the models by systematically329

excluding a year of data, refitting the model, and recording the deviance explained and significance of the330

covariates. The consistent significance of specific covariates in this exercise lends some credence that those331

covariates’ influence in the model was not the result of outliers (Figure 2e). Some collinearity existed among332

covariates (Figure 39 & Figure 40), but none of the collinear variables were significant in the models.333

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 0.6052 0.0505 11.9819 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(temperature) 1.9964 2.3824 4.5850 0.0204
s(disease) 1.0000 1.0000 1.3152 0.2650
s(discard) 1.0000 1.0000 0.4639 0.5036
s(bycatch) 1.0000 1.0000 1.1509 0.2961
s(mat_pop) 1.8356 1.9601 4.0153 0.0261

Table 1: GAM output for full model predicting mature mortality. Deviance explained = 66.8%

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 0.1750 0.0121 14.4737 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(disease) 1.6017 1.8194 1.3939 0.3717
s(temperature) 1.5788 1.7957 6.0398 0.0067
s(mat_pop) 1.9039 1.9757 4.5453 0.0352
s(predation) 1.0000 1.0000 0.1465 0.7064
s(bycatch) 1.0000 1.0000 1.1798 0.2917
s(cannibalism) 1.6038 1.8388 1.5158 0.3215

Table 2: GAM output for full model predicting immature mortality. Deviance explained = 72.2%

Models that excluded insignificant variables from each full model were used in out-of-sample prediction and334

randomization tests (see Table 3 & Table 4 for covariate significance and deviance explained and Figure 41335

& Figure 42 for model diagnostics). One thousand iterations of a randomization test were performed in336

which the covariate time series were randomized, the models refit, and the deviance explained recorded.337

This test was aimed at understanding if the explanatory power of the model was a result of the number of338

covariates considered and the flexibility of the model or if the results were an indication of some underlying339

signal in the data. If the deviance explained by the model using the non-randomized data exceeded the 95th340

quantile of the randomization trials, the deviance explained from the fitted model is less likely to be a result341

of over-fitting resulting from too many covariates or too flexible smooths. The deviance explained from both342

of the trimmed models exceeded the 95th quantile of deviance explained from the randomization (Figure 43343

& Figure 44). Out-of-sample predictions were made by excluding the last 1,2, and 3 years of data, refitting344
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the model, then attempting to predict the held out data based on the covariates observed in those years (see345

figure 2 of the main text for a discussion).346

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 0.6052 0.0497 12.1798 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(temperature) 1.8723 2.2591 4.5071 0.0212
s(mat_pop) 1.8819 1.9750 7.4877 0.0025

Table 3: GAM output for trimmed model predicting mature mortality. Deviance explained = 62.9%

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 0.1750 0.0130 13.4588 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(temperature) 1.6929 1.9043 8.0575 0.0016
s(mat_pop) 1.9760 1.9981 6.2179 0.0077

Table 4: GAM output for full model predicting immature mortality. Deviance explained = 59.1%

How could temperature relate to mortality mechanistically?347

Increased temperature was consistently correlated with increased estimated mortality in our models, but the348

range of temperatures observed were not beyond the thermal tolerances of snow crab. Foyle et al. (1989)349

captured 20 snow crab of carapace size 85-95 mm in 1986 and raised them in the lab in a range of thermal350

regimes to understand the impacts of increased temperatures on mortality and caloric requirements for351

snow crab. In addition to identifying the thermal tolerances of snow crab (crab stop eating around 12352

degrees C), Foyle et al. observed a doubling of caloric requirements for snow crab held in 3 degrees Celsius353

water as compared to those in 0 degree waters. Here we calculated an index of the caloric requirements354

for the population of snow crab in the eastern Bering Sea over time using the abundance at size of snow355

crab observed in the NMFS survey, the temperature occupied of crab at size calculated from observations356

of bottom temperature in the NFMS survey, and the observations of caloric requirements of snow crab357

by temperature produced by Foyle et al. (1989). The relationship between temperature and the caloric358

requirements of snow crab (kCalt) reported by Foyle et al. was:359

kCals=90mm,t = 2.2 ∗ e
−(t−5.2)2

30.7 (19)

Snow crab numbers at size (s) by year (y) (Ns,y) and the temperature occupied at size by year (Ts,y were360

calculated as described above. The caloric requirements reported in Foyle et al. were based on observations361

of crab that were 85-95 mm carapace width, so these results need to be extrapolated to the range of sizes362

used in this analysis. Kleiber’s law (Kleiber, 1947) states there is a consistent relationship between the body363

mass and metabolic requirements of organisms (kCal). The relationship has been generalized as:364

kCalm = mass0.75 (20)

Calculating the metabolic requirements for snow crab at size by year, kCalsnow
s,y , can be calculated by365

evaluating the caloric requirements of 90mm carapace width crab at a given temperature were calculated,366

then scaling that up or down based on Kleiber’s law:367

kCalsnow
s,y = 2.2 ∗ e

−(t−5.2)2
30.7

3000.75 w0.75
s (21)
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The resulting caloric requirements by size and temperature can be seen in Figure 3b of the main text.368

The population-wide caloric requirements increased sharply in 2018 and to explore potential impacts of this369

increase, we analyzed the weight at size data available (Figure 45). GAMs were used to predict observed370

weights at size wi,s,y using the bottom temperature in which the crab was collected, ti, measured carapace371

width cwi, and year as a factor:372

wi,s,y = s(cwi) + s(ti) + year + ϵ (22)

The GAMs explained 97.4% of the deviance in the weights of snow crab and all covariates were significant373

(Table 5).374

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 218.5199 2.2252 98.2019 < 0.0001
as.factor(AKFIN_SURVEY_YEAR)2015 6.4525 3.1690 2.0361 0.0419
as.factor(AKFIN_SURVEY_YEAR)2017 12.6093 2.4840 5.0763 < 0.0001
as.factor(AKFIN_SURVEY_YEAR)2018 -11.9217 6.2536 -1.9064 0.0568
as.factor(AKFIN_SURVEY_YEAR)2019 4.0886 2.7473 1.4882 0.1369
B. smooth terms edf Ref.df F-value p-value
s(WIDTH) 6.4225 7.5862 6340.9617 < 0.0001
s(GEAR_TEMPERATURE) 1.9362 2.3359 17.0800 < 0.0001

Table 5: GAM output for model predicting male snow crab weight. Deviance explained = 97.4%

In general, higher temperatures were associated with higher weight at size (Figure 46). The weight at size375

curves for 2015 and 2017 were scaled significantly higher than the base year of 2011, whereas the year 2018376

was marginally significantly lower (p=0.057). The marginal significance likely resulted from the relatively377

small sample size of weight at size available in 2018 (N=27), but the effect size was large (the coefficient378

associated with 2017 was 12.60; the coefficient associated with 2018 was -11.92) which translated to large379

differences in estimated weight at size between the years reported in the main document.380
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Figure 1: Observed Tanner crab.
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Figure 2: Map of slope habitat.
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Figure 3: Fishery cpue.
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Figure 4: Observed proportion of mature new shell mature crab in the NMFS summer survey. Red line
represents the median over years and the blue lines are the observed data. Chela height data were not
collected in years without a blue line. These data are used to separate the numbers at size into mature and
immature states for the input data to the population dynamics model.
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Figure 5: Empirical relationshipe between pre- and post-molt size (left) derived from crab capture in the
wild pre-molt and observations in the lab. Calculated size-transition matrix used in the population dynamics
model (right).
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Figure 6: Locations of the BSFRF experimental trawls to evaluate the capture efficiency of the NMFS
summer trawl survey for snow crab in the eastern Bering Sea.
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Figure 7: Inferred selectivity from the BSFRF experimental trawls.
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Figure 8: Fits of models with increasing complexity.
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Figure 9: Estimated processes from model with increasingly complex time-variation.
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Figure 10: Fits from all years to immature size composition data from a model in which mortality varies
over time.
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Figure 11: Fits from all years to mature size composition data.
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Figure 12: Estimates of cathchability by maturity state (black lines) compared to the underlying values
(red line) from simulations testing the estimation ability of the population dynamics models.
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Figure 13: Estimates of mortality by maturity state (black lines) compared to the underlying values (red
line) from simulations testing the estimation ability of the population dynamics models.
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Figure 14: Estimates of recruitment (black lines) compared to the underlying values (red line) from simula-
tions testing the estimation ability of the population dynamics models.
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Figure 15: Model fits from sensitivity tests.
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Figure 16: Estimates of mortality and catchability by maturity state over sensitivity runs.
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Figure 17: Size at which half of the crab in the population are mature over time. (note, this is not the
probability of undergoing terminal molt, rather the proportion of the number of mature vs. immature crab
at size in the population)
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Figure 18: Calculated covariates incorporated into GAMs to relate stressors to estimated mortality. Two
covariates (discard and predation) are only relevant for one maturity state based on the critical role size
plays in the process (i.e. discards are primarily relatively large crab and predation is primarily smaller crab).
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Figure 19: Bottom temperature at the time of the NMFS summer survey.
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Figure 20: Distribution and intensity of densities of crab <55 mm carapace width in the NMFS summer
survey.
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Figure 21: Temperature occupied over time of crab by 5 mm size bin.
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Figure 22: Temperature occupied over time of crab by maturity state.
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Figure 23: Centroids of abundance for Pacific cod in the Bering Sea over time (left). Right panels show the
time series of the centroids broken down by latitudinal and longitudinal components.
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Figure 24: Location and number of crab observed in cod stomachs over time. The are the raw data used to
calculate crab consumption by cod and have not been adjusted for sampling effort, but provide background
for the spatial distribution of predation over time.

36



Figure 25: Consumption of crab by Pacifi cod at size over time.
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Figure 26: Numbers at size over time of snow crab (left). Observed numbers of crab (red line) in 2019 and
2021 vs. projected numbers of crab from 2018 and 2019 given a mortality equal to 0.27 (the assumed value
in the assessment; top left). Numbers of missing crab at size (red line) with the size of crab beneath which
cod predate upon (dashed vertical black line).
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Figure 27: Location and intensity of bitter crab disease over time from visual prevalence observations in
the NMFS summer survey.
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Figure 28: Overlap of large males (>95 mm carapace width) and males smaller than 55 mm carapace width.
Opacity of the dot represents the density of crab. Blue represents overlapping distribution. Green and red
represent non-overlapping observations of small and large males, respectively.
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Figure 29: Relative risk at size for cannibalism over time.
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Figure 30: Times series by size of he density of large males in overlapping space (top), the propotion of
small males in the overlapping area (middle), and the product of the two (bottom), which is used as an index
of cannibalism in the models relating estimated mortality to environmental stressors.
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Figure 31: Location and intensity of bycatch of snow crab over time in log space.
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Figure 32: Comparison of location and intensity of bycatch in 2018 for natural and log space.
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Figure 33: Centroids of bycatch over time calculated over the entire year (left). Centroids broken into time
series of latitudinal and longitudinal components calculated over the entire year and during the months
December through March which should roughly overlap with mating.
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Figure 34: Bycatch by gear types reported from observer programs.
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Figure 35: Smooths resulting from the full model estimating the relationship between environmental co-
variates and immature mortality.
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Figure 36: Smooths resulting from the full model estimating the relationship between environmental covari-
ates and mature mortality.
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Figure 37: Diagnostic plots for the full models relating immature mortality and environmental stressors.
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Figure 38: Diagnostic plots for the full models relating mature mortality and environmental stressors
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Figure 39: Pairs plots displaying the correlation between covariates for immature crab.
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Figure 40: Pairs plots displaying the correlation between covariates for mature crab.
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Figure 41: Diagnostic plots for the trimmed models relating immature mortality and environmental stressors.
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Figure 42: Diagnostic plots for the trimmed models relating mature mortality and environmental stressors.
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Figure 43: Results of randomization trials for the trimmed models relating estimated immature mortality to
environmental stressors. Grey bars represent the number of trials in which the randomized model explained
the deviance on the x-axis. Dashed vertical red line represents the 95th quantile of the deviance explained
by the randomized trials. Blue line represents the deviance explained with the real data.
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Figure 44: Results of randomization trials for the trimmed models relating estimated immature mortality to
environmental stressors. Grey bars represent the number of trials in which the randomized model explained
the deviance on the x-axis. Dashed vertical red line represents the 95th quantile of the deviance explained
by the randomized trials. Blue line represents the deviance explained with the real data.
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Figure 45: Observed weight at size over time colored by temperature at which the crab was collected.
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Figure 46: GAM estimated influence of temperature and carapace width on observed weights of crab.
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