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* What happened?

* How do we project M going forward?




Climate adaptation perspective

Recognize,

attribute,

and anticipate change

—

- What happened?
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What is M going forward?
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“What happened?” requires a simple answer

Immature female snow crab
Abundance and 95% CI
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1985 1990
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Few observations

Collinear covariates
(predation, disease, etc.)
Complex answers require an
elephant’s worth of model on
a mouse’s amount of data
Impossible to rule out
alternate explanations
Focusing on proximate
mechanisms may be fruitless



ollapse coincides with rapid borealization
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Recent warming leads to a rapid borealization of
fish communities in the Arctic
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SEA ICE RETREAT ALTERS THE BIOGEOGRAPHY
OF THE BERING SEA CONTINENTAL SHELF
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Abstract.  Seasonal ice cover creates a pool of cold bottom water on the eastern Bering Sea
continental shelf cach winter. The southern edge of this cold pool, which defines the ecotone
between arctic and subarctic communities, has retreated ~230 km northward since the carly
1980s. Bottom trawl surveys of fish and invertebrates in the southeastern Bering Sea (1982—
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Borealization of the Arctic Ocean in
Response to Anomalous Advection
From Sub-Arctic Seas
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Deep demersal fish communities respond rapidly to warming in
a frontal region between Arctic and Atlantic waters
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Abstract

The assessment of climate impact on marine communities dwelling deeper than the
well-studied shelf seas has been hampered by the lack of long-term data. For a long
time, the prevailing expectation has been that thermal stability in deep ocean layers
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Approach

1.Create an index to measure the progress of
borealization (recognize)

2 .Evaluate the relationship between borealization and
snow crab abundance (recognize)

3.Evaluate the evidence for human contributions to
borealization (attribute)

4.Use climate models to project borealization & snow crab
abundance, make inference about time-varying M
(anticipate)



1. Measure borealization

Ecosystem properties associated with borea

Arctic

Subarctic

More ice .
Late ice retreat .
Cold summer bottom temp .
lce-associated blooms

Earlier blooms .

Aggregated phytoplankton Y

Larger blooms

Benthic production
More Calanus

Less Hematodinium
More Arctic groundfish
Fewer Pacific cod

S

Less ice .
Early ice retreat .
Warm summer bottom temp ¢
Open-water blooms

D¢
Later blooms .
Y

Smaller phytoplankton

Smaller blooms

Pelagic production
More Pseudocalanus
More Hematodinium
Fewer Arctic groundfish
More Pacific cod

vk Hypothesized proximate mechanisms
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1. Measure borealization

value

Time series for borealization index
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1. Measure borealization

Estimates with 95% confidence intervals

Borealization index: Dynamic Factor Analysis trend

Y% Hypothesized proximate mechanisms
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2. Borealization effect on snow crab

Response variable: immature survey abundance in core range
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2. Borealization effect on snow crab

Immature abundance with estimated 2020 value and uncertainty

()
1

Multiple imputation using:

* Model mature male
snow crab abundance

* Model mature female
snow crab abundance

* Model age3+ pollock
biomass

* Model age2+ yellowfin
biomass

* Model female Alaska
plaice biomass
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2. Borealization effect on snow crab

Abundance declines with high borealization values

Bayesian autoregressive regression model:

abundance; ., ~ abundance; + s(borealization_trend;) + ¢

8.5

Conditional effect of
borealization: Posterior 8.0
mean with 80 /90 / 95%
credible intervals
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3. Human contribution to borealization

Attribution of extreme
temperatures since 2014

8. THE HIGH LATITUDE MARINE HEAT WAVE OF 2016 AND
ITS IMPACTS ON ALASKA

JonN E. WaLsH, RicHARD L. THoMAN, UMA S. BHATT, PETER A. BIENIEK, BRIAN BRETTSCHNEIDER,
MicHAEL Brusaker, SETH DANIELSON, Rick Laper, FLorence FeTTerer, Kris HoLDeRrIED, KATRIN KEN,

ANDY MaHONEY, MoLLy McCAMMON, AND JaMEs PARTAIN

The 2016 Alaska marine heat wave was unprecedented in terms of sea surface temperatures
and ocean heat content, and CMIP5 data suggest human-induced climate change has greatly
increased the risk of such anomalies.

THE RECORD LOW BERING SEA ICE EXTENT IN 2018:
CONTEXT, IMPACTS, AND AN ASSESSMENT
OF THE ROLE OF ANTHROPOGENIC CLIMATE CHANGE

RicHARD L. THOMAN Jr., UMA S. BHATT, PeTer A. Bieniek, Brian R. BRETTSCHNEIDER, MICHAEL BRUBAKER,
SetH L. DanieLsoN, ZacHARY Lase, Rick LADER, WALTER N. MEeier, GAY SHEFFIELD, AND JoHN E. WALSH
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Evaluating ecosystem change as Gulf of Alaska temperature exceeds the
limits of preindustrial variability
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High-impact marine heatwaves attributable to
human-induced global warming

Charlotte Laufkdtter'?*, Jakob Zscheischler'?, Thomas L. Frélicher'?

Marine heatwaves (MHWs)—periods of extremely high ocean temperatures in specific regions—have
occurred in all of Earth’s ocean basins over the past two decades, with severe negative impacts

on marine organisms and ecosystems. However, for most individual MHWs, it is unclear to what extent
they have been altered by human-induced climate change. We show that the occurrence probabilities
of the duration, intensity, and cumulative intensity of most documented, large, and impactful MHWs
have increased more than 20-fold as a result of anthropogenic climate change. MHWs that occurred only
once every hundreds to thousands of years in the preindustrial climate are projected to become
decadal to centennial events under 1.5°C warming conditions and annual to decadal events under

3°C warming conditions. Thus, ambitious climate targets are indispensable to reduce the risks

of substantial MHW impacts.

that equals or exceeds the duration, inten-
sity, and cumulative intensity of the observed
MHW in preindustrial and present-day model
simulations. These probabilities are denoted

by r:'. i daayr P —dayr Lp d s
pduation - pintensity g peumuativeintensity
respectively.

Here, we explicitly take changes in the fre-
quency of heatwaves as well as changes in the
duration, intensity, or cumulative intensity
of heatwaves into account (see materials and
methods). Our approach builds on the work
of Stott et al. (28) and Oliver et al. (6) but
with several modifications. In contrast to most
previous attribution studies, we specifically
calculate the occurrence probabilities of heat-
waves as opposed to the probabilities of ex-

14



3. Human contribution to borealization

Fraction of Attributable Risk (FAR)

FAR = 1 preindustrial probability

current probability

FAR =0 ®====) equally likely with / without human influence
FAR = 0.5 ==== twice as likely with human influence

FAR=1 ==== only possible with human influence



3. Human contribution to borealization

23 CMIP6 models

* Weighted for each region
(bias, autocorrelation,
low-frequency prediction)

* Corrected for differences
in climate sensitivity and
predicted warming rate
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3. Human contribution to borealization

Borealization maps onto annual sea surface tem

oerature
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3. Human contribution to borealization

Recent Bering Sea SST extremes are human-caused
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3. Human contribution to borealization

| extremes

Rapid borealization events occur during human-caused SS
C
T 1-
-
Posterior mean with o
80 /90 /95% 'E
credible intervals O 0+
©
N
®
O -1
o
m
2 -
IIIII 111 II Ll [ T IIIII [N | IIIIIII 111 IIIIIJI
0.00 0.25 0.50 0.75 1.00

Fraction of attributable risk



4. Project borealization

Expected return time
for SST anomalies >
2016, 2018-2020

values

(high borealization
years)
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credible intervals
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Conclusions

The southeast Bering has rapidly borealized since 2016
Strong evidence for negative impacts on snow crab

* A priori expectation for ice-associated species

* Proposed mechanisms map onto borealization

e Statistical support
Strong support for human role in borealization
Probability of borealization already increased; projected to continue
Recent M is the most probable value for projections
M has an anthropogenic component:

“non-fishing mortality” rather than “natural mortality”

Northern Bering important for longer-term health of the fishery



