Climate-enhanced multi-species Stock Assessment for walleye pollock, Pacific and arrowtooth flounder in the EBS
Kirstin K. Holsman, Jim lanelli, Kerim Aydin, Grant Adams, Kelly Kearney, Kalei Shotwell, and Ingrid Spies

November, 2022

Model Summary

CEATTLE 2016-now annually

- Age or Length based
- Multi- or single-species
- ADMB
- Climate (energetics) effects on
- Growth
- Mortality (if in MSM)
- Recruitment
- Used to derive climate-inform. ABC
- Pollock, Pcod, ATF

Rceattle (Adams, Holsman, Punt, et al.

- Age or Length based
- Multi- or single-species
- TMB
- Random effects
- Data weighting
- Climate (energetics) effects on
- Growth*
- Mortality (if in MSM)

Recruitment

- Used in EBS, GOA, and Cali Current (hake)
- Pollock, Pcod, ATF, Halibut, and Hake

CEATTLE

2022 Climate-enhanced multi-species Stock Assessment for walleye pollock, Pacific cod, and arrowtooth flounder in the South Eastern Bering Sea

Kirstin K. Holsman, Jim Ianelli, Kerim Aydin, Grant Adams, Kelly Kearney, Kalei Shotwell, Grant Thompson, and Ingrid Spies
kirstin.holsman@noaa.gov November 2022
Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Seattle, Washington 98115

ROMS output

α

ROMS output

https://data.pmel.noaa.gov/aclim/las/UI.html

Biomass

0

Age I rec

Fishing Mortality

0

Discussion : Climate informed BRPs

I. Methods to explore for setting climate-informed ABCs
2. Feedback on how long-term outlooks are communicated
3. Push to align with other stocks?

Discussion : Climate informed BRPs

Probability of near-term (+ 1-2 yr) biomass decline or increase:

- Relative to 2022 levels, the model projects SSB of pollock will increase in 2023 (projected based on 2022 catch) followed by an increase in SSB in 2024 (projected with $F_{A B C}$). For Pacific cod the model projects a decline in SSB in both 2023 and 2024.
- Ensemble projections using climate-enhanced recruitment models and projected future warming scenarios (including high carbon mitigation (ssp 126), low carbon mitigation ($\operatorname{ssp} 585$), as well as persistence scenarios and assuming 2022 catch for 2023 and $F_{A B C}$ for 2024) estimate a 95% chance that pollock SSB will remain between $125-138 \%$ of 2022 SSB in 2023 and will be between $123-134 \%$ of 2022 SSB levels in 2024.
- Ensemble projections using climate-enhanced recruitment models based on long-term projections estimate a 95% chance that Pacific cod SSB will continue to decline to between $86-99 \%$ of 2022 SSB in 2023 and between $73-83 \%$ of 2022 SSB levels in 2024.
- Ensemble projections using climate-enhanced recruitment models based on long-term projections estimate a 95% chance that arrowtooth SSB will be between 92 and 130% of 2022 SSB in 2023 and will be between 87 and 117% of 2022 SSB levels in 2024 .

Discussion : Climate informed BRPs

Probability of long-term (2032, 2050, 2080) biomass decline or increase under high mitigation

 (low warming) scenarios:Note that projections assume no adaptation by the species, fishery, or fishery management.

- Ensemble projections using climate-enhanced recruitment models and projected future warming scenarios and assuming $F_{A B C}$ for 2024 - 2100) estimate a 95% chance that pollock SSB will be between $69-76 \%$ of 2022 SSB in 2032, between $73-78 \%$ of 2022 SSB levels in 2050 , and between $71-75 \%$ of 2022 SSB levels in 2080.
- Ensemble projections using climate-enhanced recruitment models based on long-term projections estimate a 95% chance that Pacific cod SSB will be between $69-78 \%$ of 2022 SSB in 2032, between $69-74 \%$ of 2022 SSB levels in 2050, and between 58-64\% of 2022 SSB levels in 2080.
- Ensemble projections using climate-enhanced recruitment models based on long-term projections estimate a 95% chance that arrowtooth SSB will be between $76-100 \%$ of 2022 SSB in 2032, between $81-92 \%$ of 2022 SSB levels in 2050, and between $76-90 \%$ of 2022 SSB levels in 2080.

Probability of long-term (2032, 2050, 2080) biomass decline or increase under low carbon mitigation scenarios (high warming):

Discussion : Climate informed BRPs

NO!

Discussion : Climate informed BRPs

Set target at climate naive (B0* from historical or B0
from no-climate projection)

AI: Use model with climate effects to get F40 for each climate projection and ABC 2080

A2: Set ABC_2023 = avg(ABC2080), calc F2023 and use that to get ABC_2024 (avg. using models with climate effects)

