TO:
FROM:

DATE: November $30 / 1982$
SUBJECT: Bering/Chukchi Sea Herring FMP

ACTION REQUIRED

(a) Final approval of FMP revisions.
(b) Report on status of stocks and stock separation study.
(c) Review proposals to Board relevant to FMP.

BACKGROUND
At the July 1982 meeting the Council withdrew the Herring FMP from Secretarial review. Revisions were incorporated with a strong emphasis on reducing the likelihood of overfishing and eliminating directed foreign fishing for herring. A revision package was distributed to Council family for tentative approval in September, and the package was then sent to the entire herring mailing list. A public hearing, attended by Rudy Petersen, Leroy Sow and Clarence Pautzke, was held in Bethel on November 11. A summary of the hearing and a resolution passed by the Association of Village Council Presidents Fisheries Task Force are included here as agenda item $\mathrm{D}-2$ (c). The Council has agreed to accept public testimony on the revisions until final action is taken at the December meeting.

General Summary of the FMP

The Bering/Chukchi Sea Herring FMP established the management objectives and regulatory intent for directed herring fisheries in the FCZ. The FMP states that U.S. fishermen are capable of harvesting the entire $O Y$ and have expressed the desire and intent to do so. The FMP recognizes the priority of inshore fisheries, which are primarily for roe, and allows a harvest of only that portion of the Acceptable Biological Catch (ABC) remaining after the roe fisheries are completed. Although the $A B C$ is determined by a conservative formula which gives a low exploitation rate in most cases, the remaining $A B C$ is reduced by half to further address the concerns about impacting subsistence and other important stocks.

A summer fishery in the Aleutians is allowed by the FMP. This fishery will occur from July 1 through September 30 south of $55^{\circ} 47^{\prime} \mathrm{N}$ and is limited to $2,000 \mathrm{mt}$. When $2,000 \mathrm{mt}$ has been taken, whether in state waters, the FCZ , or a combination, the FCZ automatically closes. The area will reopen if a winter fishery is allowed, which may occur on October 1.

The winter fishery portion of $O Y$ is determined by the revised $O Y$ formula mentioned above. LAfter $A B C$ is calculated, all previous herring harvests during the fishing year (roe and food/bait) and AIC are subtracted. The remainder is divided by two, and if this amount is greater than $2,000 \mathrm{mt}$ a winter fishery will occur. The winter harvest may not exceed $10,000 \mathrm{mt}$, however.
$\chi_{\text {No }}$ directed herring fishing by foreign nations is allowed under this FMP an incidental catch (AIC) in the groundfish fisheries is allowed. This AIC is limited to 0.1% of the annual groundfish allocation for each nation (including the U.S.). AIC becomes part of the groundfish $O Y$ as stated in the Bering Sea/Aleutian Islands Groundfish FMP. When a nation reaches its AIC it is automatically excluded from the Herring Savings Area, a large area of the Bering Sea where herring concentrate during the winter months. At that time herring also becomes a prohibited species to all fishermen and vessels of that nation. The total AIC is not expected to exceed $2,000 \mathrm{mt}$.
(It is the stated intent of the FMP to establish a cooperative management (policy of the Council, the Board of Fisheries, and NMFS and ensure that federal offshore and state inshore herring management regimes complement each other. The offshore fisheries will be managed to reduce their impact on the inshore fisheries without unnecessary disruption or restriction of offshore groundfish and herring fishing operations.

Status of Stocks and Stock Separation Study

In 1982, the harvest of herring in the eastern Bering Sea Commercial Fishing Districts totalled $24,897 \mathrm{mt}$. An additional $2,939 \mathrm{mt}$ was taken off Unalaska Island. Subsistence fisheries harvested on additional 97 mt . Reports by ADF\&G on the 1982 fisheries, status of stocks, and age, sex, and size composition of eastern Bering Sea stocks are available as agenda items D-2(a) and (b). Additional presentations will be made by ADF\&G and NMFS staff at the Council/Board meeting.

Preliminary results are available for a stock separation study contracted by ADF\&G to the Fisheries Research Institute at the University of Washington. ADF\&G staff will give a brief report on the findings to date.

Proposals to the Board of Fisheries

Two proposals to the Board concern the areas outside three miles covered by the FMP:

Proposal \#118: Would allow herring to be taken in the Bering Sea north of $55^{\circ} 4^{\prime} \mathrm{N}$ by trawls during seasons established by emergency order (p .60 of proposal packet; proposed by ADF\&G staff).

Proposal \#168: Would eliminate use of trawls in the South PeninsulaAleutian Islands herring fishery for food and bait between April 15 and July 15 (p. 84; proposed by Emil Berikoff).

PACIFIC HERRING STOCKS AND FISHERIES
 IN THE EASTERN BERING SEA, ALASKA, 1982

A Report to the North Pacific Fisheries Management Council

November 1982

Prepared by:
Stephen M. Fried, Craig Whitmore, and
Daniel Bergstrom

Alaska Department of Fish and Game
Division of Commercial Fisheries
333 Raspberry Road
Anchorage, Alaska 99502

This report summarizes current information on eastern Bering Sea Pacific herring stocks and fisheries within Alaskan waters. A more detailed account of this information is presented in Fried et al (1982).

COMMERCIAL FISHERIES

A total of $24,897 \mathrm{~m} . t$. of Pacific herring were harvested in eastern Bering Sea Commercial Fishing Districts during 1982 (Figures 1 and 2, Table 1). This was the largest total harvest recorded since these fisheries began in the 1960's. Exploitation of estimated available spawning biomass was 21.5% (Table 2). Wastage of herring was estimated to be less than $500 \mathrm{~m} . t$. for all Districts combined. Most documented wastage was due to storms and vessel mishaps rather than to dumping of unwanted herring. Numbers of buyers and fishermen increased in Togiak District, but decreased in all other Districts (Table 3). Spawn on kelp harvests in Togiak and Norton Sound Districts totaled 141.4 m.t. (Table 4). Value of total herring and spawn on kelp harvests to fishermen was estimated to be $\$ 7.9$ million.

A total of $2,939 \mathrm{~m} . t$. of herring was also harvested in the vicinity of Unalaska Island during 1982 (Table 1). Studies are currently underway to determine whether herring harvested during this fishery belong to stocks which spawn and are harvested in Togiak, Security Cove or Goodnews Bay Districts.

SUBSISTENCE FISHERIES

A total of 97 m.t. of Pacific herring were harvested by 129 families from seven villages in the Nellson Island and Yukon-Kuskokwin Delta area (Table 5).

STOCK ASSESSMENT

Methods

Aerial surveys were conducted within all Fishing Districts, except Cape Romanzof, to determine relative abundance, distribution and estimated biomass of herring schools. Basic methods of data collection were similar to those used in previous years (Barton and Steinhoff 1980). A total of 172 hours was spent in aerial assessment of herring spawning stocks: 63 hours in Togiak, 28 hours in Security Cove/Goodnews Bay, 6 hours in Nelson Island and 75 hours in Norton Sound. In-season stock size estimates could only be made for Togiak and Norton Sound Districts due to weather and water conditions. Post-season estimates were made for the remaining Districts based upon catch rates and spawn deposition during the season (Table 6).

Availability of a chartered helicopter on the Togaik fishing grounds greatly aided test fishing, catch sampling, fishery monitoring and assessment activities. Unfortunately, mechanical failures prevented use of the helicopter during most of the time period chartered purse seine vessels were available; tonnage data on only one herring school was obtained during the season (Table 7). Conversion factors of 1.2 (water depth 5 m or less), 2.5 (water depth greater than 5 m) and 3.0 (water depth greater than 8 m) per $50 \mathrm{~m}^{2}$ school surface area were used in analysis of Togiak District aerial survey data. Conversion factors of 2.4 or $3.1 \mathrm{~m} . \mathrm{t} . / 50 \mathrm{~m}^{2}$ were used for all other Districts.

Test fishing with variable mesh gillnets and sampling of commercial landings were conducted in all Fishing Districts to determine age, size and sexual maturity of herring. Additionally, chartered purse seine vessels were used to collect herring samples within Togiak District. A total of 10,739 herring was sampled during 1982.

Results
Spawning populations in most Districts were lower than those observed in 1981 (Table 6). A total of $119,600 \mathrm{~m} . \mathrm{t}$. of herring was estimated to have been present during the 1982 spawning season. Spawn deposition was similar to that observed in 1981, with totals of 66,8 and 37 linear $k m$ of milt sighted during aerial surveys in Togiak, Security Cove and Norton Sound Districts, respectively. Age composition analyses indicated that five year old herring (1977 year class) comprised 55% of the total spawning population (Figures 3 and 4). Four year old herring (1978 year class) comprised 18% of the spawning population.

Peak periods of herring abundance occurred 19-23 May in Togiak District, 25-30 May in Security Cove and Goodnews Bay Districts, and 6-14 June in the various Subdistricts of Norton Sound District. Ice and cold water temperatures delayed inshore migration and onset of spawning as compared to 1980 and 1981 in all Districts.

OUTLOOK FOR 1983

Based upon a moderate recruitment of four year old herring and the continued large returns of five year old herring in 1982, the Department of Fish and Game anticipates a harvestable surplus of herring to be available in all Districts in 1983. However, since no methods are available to reliably forecast actual returns (or to estimate recruitment), harvest levels will be adjusted during the season according to observed herring biomass. If it is not possible to determine herring abundance by using aerial surveys, stock condition will be assessed using information from test and commercial catches along with spawn deposition observations.

Although increased use of collected fishery statistics in mathematical models may provide useful information for predicting abundance trends of herring populations, further work is needed to refine real time stock assessment techniques. Offshore hydroacoustic and trawl surveys coupled with stock identification studies could provide pre-season stock size estimates. Underwater telemetry or tagging studies could provide needed information on herring movement patterns and spawning ground residence time to refine in-season stock size estimates. Inshore hydroacoustic surveys could provide a more cost effective method of obtaining conversion factor estimates than using chartered purse seine vessels.

LITERATURE CITED
Barton, L.H. and D.L. Steinhoff. 1980. Assessment of spawning herring (Clupea harengus pallasi) stocks at selected coastal areas in the eastern Bering Sea. Alaska Department of Fish and Game Informational Leaflet No. 187. 60 p.

Fried, S.M., C. Whitmore and D. Bergstrom. 1982. Pacific herring stocks and fisheries in the eastern Bering Sea, Alaska, 1982: A report to the Alaska Board of Fisheries. Alaska Department of Fish and Game mimeo. 30 p.
6/ Does not include $5 \mathrm{~m} . \mathrm{t}$. dumped (unmarketable or no market when harvested).

Te70]	$\begin{aligned} & \text { punos } \\ & \text { uơjon } \end{aligned}$	$\begin{gathered} \text { Keg } \\ \text { TOTSṬg } \end{gathered}$	Te7ar	punos UOZTON	$\begin{aligned} & \text { Jozueury } \\ & \text { odes } \end{aligned}$	Keg smoupoos 	$\begin{gathered} \text { Keg } \\ \text { _07stixg } \end{gathered}$	$\begin{aligned} & \text { puetsi } \\ & \text { eyseteun } \end{aligned}$

[^0]Table 2. Estimated biomass and commercial harvest of Pacific herring in eastern Bering Sea fishing Districts, Alaska, 1978-1982.

1/ Does not include an estimated 5,200 m.t. of waste.

Table 3. Commercial harvest of Pacific herring spawn on rockweek kelp in eastern Bering Sea Fishing District, Alaska, 1978-1982.

	District	Harvest (m.t.)	Number of Buyers	Number of Pickers	Estimated Value (Dollars)
1982					
	Togiak	106.5	8	214	176,193
	Norton Sound	34.9	1	74	57,585
1981 Total 141.4 233,778					
1980	Togiak	171.9	7	108	250,000
	Norton Sound	37.2 1/	4	22	45,000 2/
	Total	209.1			295,000
	Togiak	86.0	21	78	94,600
	Norton Sound	22.2	1	20	73,000
1979	Total	108.2			167.600
	Togiak	188.0	16	100	248,160
	Norton Sound	11.8	1	19	15,576
1978	Total	199.8			263,736
	Togiak	149.6	11	160	119,800
	Norton Sound	3.4	1	0	2,723
	Total	153.0			122,523
$\begin{aligned} & 1 / \\ & 2 / \end{aligned}$	s not include	m.t. dumpe	t during te	ccident.	

Table 4. Numbers of buyers and fishemen participating in eastern Bering Sea Pacific herring fisheries, Alaska, 1978-1982.

Table 5. Subsistence herring catch (in metric tons) and effort data by selected areas, eastern Bering Sea, Alaska, 1975-1982. I/

Village	1975	1976	1977	1978	1979	1980	1981	1982
Nelson Island								
Tununak	19.8	13.9	51.9	34.6	31.0	59.2	36.0	43.8
Umkumiut	30.0	8.5	2.8	10.4	7.5	3.1	9.0	
Toksook Bay	31.0	31.8	19.3	33.5	46.5	26.6	13.0	31.6
Total	80.8	61.2	74.0	78.5	85.0	88.9	58.0	75.4
Number of Fish ing Familes	109	42	90	83	54	70	93	65
Yukon-Kuskokwim Delta								
Scammon Bay	-	0.6	-	0.6	5.4	2.8	6.9	3.5
Chevak	-	0.6	0.1	-	2.1	3.2	1.7	1.8
Hooper Bay	2.5	2.7	2.1	3.5	2.8	3.3	3.6	4.2
Kwigillingok	-	9.6	0.9	-	7.2	12.0	-	12.0
Total	2.5	13.5	3.1	4.1	17.5	21.3	12.2	21.5
Number of Fish ing Families	34	49	39	29	106	80	45	64
Areas Combined								
Total Catch	83.3	74.7	77.1	82.6	102.5	110.2	70.2	96.9
Number of Fish ing Families	143	91	129	112	160	150	138	129
1/ Other areas with small catches have been surveyed irregularly (1975-1978 estimated total coastal yearly subsistence catch averaged $100 \mathrm{~m} . \mathrm{t}$.$) .$								
2/ Estimate ba	ased on	ost se	son obs	vation				

Table 6. Relative abundance index (RAI) and estimated biomass of eastern Bering Sea herring, Alaska, 1978-1982.

District	1978	1979	1980	1981	1982
	Relative Abundance Index (RAI) 1/				
Togiak	43,050	137,630	15,249	79,352	49,998
Security Cove	246	2,912	435	2,228	4863
Goodnews Bay	241	3,729	3/.	1,593	$3 /$
Nelson Island	1,079	3/	3/	1,072	$3 /$
Cape Romanzof	539	3/	3/	4/	- 4/
Norton Sound	1,277	1,860	2,242	6,516	4,548
Total	46,432	146,131+	17,926+	90,761+	55,032+
Estimated Biomass in m.t. 2/					
Togiak	172,600	216,800	62,300	143,900	88,800
Security Cove	1,200	19,500	1,100	7,500	4,600 3
Goodnews Bay	400	6,700 3/	1,100 3/	3,900	2,400 3
Nelson Island	5,400	5,400 3/	5,400 3/	3,600	3,600 3
Cape Romanzof	2,700	2,700 3/	2,700 3/	4,400 4/	4,400 4
Norton Sound .	4,800	7,000	7,600	20,800	15,800
Total	187,100	258,100	80,200	186,100	119,600

1/ Number of fish schools equivalent to 50 m surface area, unadjusted for presence of non-herring pelagic species.
2/ Adjusted for presence of non-herring pelagic species. Estimates for 1978 and 1979 represent low end of estimate ranges from Barton and Steinhoff (1980), 1980 estimates from Kingsbury (1980).
3/ Incomplete data due to inclement weathern and/or turbid waters, biomass estimates are questionable and are based on 1978, 1979 or 1981 data.
4/ No aeriar surveys made, 1981 estimate based upon assumption that commercial harvest represented 15 percent of total biomass; 1981 estimate used for 1982.

Table 7. Conversion estimates (metric tons of Pacific herring per $50 \mathrm{~m}^{2}$ school surface area) obtained from test purse seine fishing, Togiak District, Alaska, 1978-1982.

Year	Water	Depth (m)	Biomass per RaI unit	(m.t. $/ 50 \mathrm{~m}$)
1981	-	2	1.1	Catch Landed
1980		3	1.2	Catch Landed
1980		5	1.1	Catch Landed
1980		5	1.2	Catch Estimated in Net
1979		6	2.4	Catch Landed
1980		6	3.0	Catch Estimated in Net
1980		6	2.6	Catch Estimated in Net
1981		6	1.7	Catch Landed
1980		8	1.6	Catch Estimated in Net
1981		8	4.0	Catch Landed
1982		8	1.9	Catch Estimated in Net
1978		?	6.7	Catch Estimated in Net
1978		?	11.0	Catch Estimated in Net

Figure 3. Age composition of Pacific herring in spawning populations and commercial harvests in Togiak, Security Cove and Goodnews Bay Commercial Herring Fishing Districts, Alaska 1982.

Figure 4. Age composition of Pacific herring in spawning populations and commercial harvests in Cape Romanzof and Norton Sound Commercial Herring Fishing Districts and the Nelson Island area, Alaska, 1982.

Age, Sex and Size Composition of Pacific Herring, Clupea harengus pallasi, From Eastern Bering Sea Coastal Spawning Sites, Alaska, 1982. \because
by

Stephen M. Fried, Craig Whitmore and Daniel Bergstrom

Alaska Department of Fish and Game Division of Commercial Fisheries Anchorage, Alaska

LIST OF FIGURES... i
Page LIST OF TABLES... ii ABSTRACT.. v INIRODUCIION... 1 MEIHODS.. 1 $1=$

RESULIS AND DISCUSSION. \qquad
ACKNOWLEDGEMENTS. \qquad 3

LITERATURE CITED. \qquad 4

LIST OF FIGURES

Eigure Page

1. Togiak ($\mathrm{A}=$ Kulukak, $\mathrm{B}=$ Nunavachak, $\mathrm{C}=$ Togiak and$D=$ Hagemeister Sections), Security Cove (E = SecurityCove and $\mathrm{F}=$ Red Mountain Subdistricts) and Goodnews BayCommercial Herring Fishing Districts and Nelson Island(restricted to subsistence fishing), Alaska................... 5
$*$2. Cape Romanzof and Norton Sound ($A=$ St. Michael, $B=$Unalakleet and C = Çape Denbigh Subdistricts) CommercialHerring Fishing Districts, Alaska................................ 6

LIST OF TABLES

Table Page

1. Age, sex, and size data for Pacific herring captured by conmercial purse seines in Kulukak Section, Togiak District, 1982 7
2. Age, sex and size data for Pacific herring captured by conmercial purse seines in Nunavachak Section, Togiak District, 1982 7
3. Age, sex and size data for Pacific herring captured by conmercial purse seines in Togiak Section, Togiak District, 1982 8
4. Age, sex and size data for Pacific herring captured by commercial purse seines in Hagemeister Section, Togiak District, 1982 8
5. Age, sex and size data for Pacific herring captured by commercial purse seines in Kulukak, Nunavachak, Togiak and Hagemeister Sections, Togiak District, 1982 9
6. Age, sex and size data for Pacific herring captured by commercial gillnets in Kulukak Section, Togiak District, 1982 10
7. Age, sex and size data for Pacific herring captured by conmercial gillnets in Nunavachak Section, Togiak District, 1982 10
8. Age, sex and size data for Pacific herring captured by conmercial gillnets in Togiak Section, Togiak District, 1982 11
9. Age, sex and size data for Pacific herring captured by commercial gillnets in Hagemeister Section, Togiak District, 1982 11
10. Age, sex and size data for Pacific herring captured by Commercial gillnets in Kulukak, Nunavachak, Togiak and Hagemeister Sections, Togiak District, 1982 12
11. Age, sex and size data for Pacific herring captured by test purse seines in Kulukak Section, Togiak District, 1982 13
12. Age, sex and size data for Pacific herring captured by test purse seines in Nunavachak Section, Togiak District, 1982 14
13. Age, sex and size data for Pacific herring captured by test purse seines in Togiak Section, Togiak District, 1982 15
14. Age, sex and size data for Pacific herring captured by test purse seines in Hagemeister Section, Togiak, District, 1982. 15
15. Age, sex and size data for Pacific herring captured by test purse seines in Kulukak, Nunavachak, Togiak and Hagemeister Sections, Togiak District, 1982 16
16. Age, sex and size data for Pacific herring captured by variable mesh gillnets in Kulukak Section, Togiak District, 1982 17
17. Age, sex and size data for Pacific herring captured by variable mesh gillnets in Nunavachak Section, Togiak District, 1982 18
18. Age, sex and size data for Pacific herring captured by variable mesh gillnets in Kulukak and Nunavachak Sections, Togiak District, 1982 19
19. Age, sex and size data for Pacific herring captured by conmercial gillnets in Security Cove District, 1982 20
20. Age, sex and size data for Pacific herring captured by variable mesh gillnets in Security Cove District, 1982. 21
21. Age, sex and size data for Pacific herring captured by commercial gillnets in Goodnews Bay District, 1982. 22
22. Age, sex and size data for Pacific herring captured by variable mesh gillnets in Goodnews Bay District, 1982.... 23
23. Age, sex and size data for Pacific herring captured by variable mesh gillnets in Tununak area, Nelson Island, 1982 24
24. Age, sex and size data for Pacific herring captured by commercial gillnets in Cape Romanzof District, 1982. 25
25. Age, sex and size data for Pacific herring captured by variable mesh gillnets in Cape Romanzof District, 1982. 26
26. Age, sex and size data for Pacific herring captured by commercial gillnets in St. Michael Subdistrict, Norton Sound District, 1982 27
27. Age, sex and size data for Pacific herring captured by conmercial gillnets in Unalakleet Subdistrict, Norton Sound District, 1982 27

28. Age, sex and size data for Pacific herring captured by commercial gillnets in St. Michael, Unalakleet and Cape Denbigh Subdistricts, Norton Sound District, 198228
29. Age, sex and size data for Pacific herring captured by variable mesh gillnets in St. Michael Subdistrict, Norton Sound District, 1982 29
30. Age, sex and size data for Pacific herring captured by variable mesh gillnets in Unalakleet Subdistrict, Norton Sound District, 1982 30
31. Age, sex and size data for Pacific herring captured by variable mesh gillnets in Cape Denbigh Subdistrict, Norton Sound District, 1982 31
32. Age, sex and size data for Pacific herring captured by variable mesh gillnets in St. Michael, Unalakleet and Cape Denbigh Subdistricts, Norton Sound District, 1982... 32

Abstract

ABSIRACT Pacific herring, Clupea harengus pallasi, were sampled in five eastern Bering Sea Commercial Fishing Districts and Nelson Island, the major subsistence fishing area, during the spring spawning migration of 1982. Samples were taken from commercial gillnet and purse seine harvests, as well as from Alaska Department of Fish and Game variable mesh gillnet and chartered purse seine vessel catches. Samples within each of the six areas were grouped by gear type, sampling week and location.

A total of 10,739 herring were sampled for age, sex, length and weight information. In all areas sampled, the relative proportion of herring age 5 and older decreased as the spawning season progressed. Relative abundance trends for three year classes were similar in all areas: the 1977 and 1978 year classes (ages 5 and 4) were abundant (usually at least 60% of each total area sample), while the 1975 year class (age 7) was poorly represented.

Mean length within each year class progressively decreased in samples taken northward from Togiak to Norton Sound. Mean length at age did not appear to be affected by capture gear type. Generally, males tended to outnumber females in most total season gillnet samples by about 1.2 or 1.5:1. Cape Romanzof gillnet samples and Togiak purse seine samples had l:l sex ratios.

INIRODUCIION

This report is part of a series which has been used to present age, sex and size information for Pacific herring, Clupea harengus pallasi, sampled in eastern Bering Sea coastal waters. Detailed analysis of the 1982 data contained in this report will be included within a forthcoming Alaska Department of Fish and Game (ADF\&G) Informational Leaflet.

MEIHODS
Study Area_Description
The study area consisted of the coastal waters between Cape Constantine and Cape Douglas (Figures la and 2). Herring samples within this area were collected from Togiak, Security Cove, Goodnews Bay, Cape Romanzof and Norton Sound Commercial Fishing Districts and Nelson Island, the major subsistence fishing area. Total herring spawning biomass in these locations was estimated to be 119,600 m.t. and was distributed as follows: 74\% in Togiak, 13\% in Norton Sound, 48 each in Security Cove and Cape Romanzof, 38 in Nelson Island and 2% in Goodnews Bay.

Sampling_Techniques

Sampling techniques were the same as those described by Fried et al (1982). Herring were sampled from comercial purse seine and gillnet harvests as well as ADF\&G chartered purse seine vessel and variable mesh gillnet catches. All herring sampled were identified according to sex, measured (standard length, mm) and aged from scales. Attempts were also made to weigh (g) as many herring as time permitted. Catches within all areas were grouped by sampling week. Catches in all Commercial Districts were also grouped by gear type and, when appropriate, location (Section or Subdistrict).

RESULIS AND DISCUSSION

A total of 10,739 herring were examined during the period 29 April to 30 June 1982 (Tables l-33). Trends in age and size data generally paralleled those noted in 1981 samples (Fried et al 1982).

No obvious trends or consistant differences in age composition, sex ratio, or mean size at age were noted among Sections in Togiak District or Subdistricts in Norton Sound (Tables 1-18 and 26-33). However, temporal differences in year class abundance were again evident within all areas. Older herring arrived and spawned earlier in the season than younger herring (e.g. Tables 18 and 33).

The 1977 year class (age 5) once again dominated catches in all areas, usually representing 40% or more of the total season sample (Tables 5, 10, 15, 18-25, 29 and 33). The 1978 year class (age 4) was also abundant in all areas, usually representing at least 20% of the total season sample. The 1974 year class (age 8) represented about 20\% of Togiak District season samples but was usually less than 10% of the total season samples from the other areas. The 1975 year class (age 7) was poorly represented in all areas. The 1976 year class (age 6) was poorly represented in the more southerly Districts, but represented about 10% or more of the season sample from Nelson Island, Cape Romanzof and Norton Sound.

Mean length within a year class did not appear to differ among samples taken by differnet gear types within the same District (e.g. Tables 5, 10, 15 and 18). However, mean length within all year classes decreased in samples taken progressively northward from Togiak to Norton Sound District. Trends within and between areas for mean weight within each year class were similar, but were not as clearly defined.

Males usuaıly outnumbered females in commercial and variable mesh gillnet catches by ratios of $1.5: 1$ and $1.2: 1$, respectively. However, the sex ratio was about l:l in Cape Romanzof commercial and variable mesh gillnet catches and in Togiak commercial and chartered purse seine catches.

ACKNOWLEDGEMENTS
The authors express their thanks to members of the ADF\&G staff who helped collect this data, to Ivan Frohne for his statistical advice, to Ichin Shen for developing the FORTRAN program used to tablulate the data, and to William D. Arvey, Alan P. Kingsbury, Charles P. Meacham and Ronald I. Regnart for reviewing the manuscript.

LITERAIURE CITED

Fried,S.M., C. Whitmore and D. Bergstrom, (in press). Age, sex and size composition of Pacific herring, Clupea harengus pallasi, from eastern Bering Sea coastal spawning sites, Alaska, 1981. ADGF\&G Technical Data Report No. . p.

Table 1 - Age, sex and size dota for Paciftc hepring captured by connorcial purse seines in Kulukak Saction, Togiak District, 1992.

Sample Period	$\begin{gathered} \text { Age } \\ \text { (sears) } \end{gathered}$	Male	Fenal	Bukaovan	Total	Purcent of Total	Mean Height (gn)	Number Uetghed	Mean Standsrd Length (Am)	Nusber heasured
	1	-	-	-	-	-	-	-	-	-
	2	-		-	-	-	-	-	-	-
	3	-	-	-	-	-	-			
	4	26	20	\because -	46	24.6	184	46	242	46
5/13-5/19	95	50	56	-	106	56.7	235	106	259	106
	6	3	5	\because	8	4.3	269	8	269	8
	7	1	-	-	1	0.3	291	1	286	1
	8	6	10	-	16	$\because 8.6$	355	16	289	16
	94	4	6	-	10	5.3	403	10	301	10
Period to	sotal	90	97	-	187	190.0	244	187	200	187
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	
	4	18	31	-	49	28.7	188	5	239	48
5/20-5/26	65	34	55	-	89	52.0	236	10	255	87
	6	2	3	-	. 5	2.9	-	-	267	5
	7	1	2	-	3	1.8	-	-	283	3
	0	8	8	-	16	9.4	348	3	289	16
	9*	3	6	-	9	3.3	-	-	295	9
Peried to	cotal	6	105	-	171	100.0	239	18	257	180
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-		-	-	-	-		
	4	44	51	-	95	26.5	184	51	241	94
All periods	ds 5	84	111	-	195	54.5	235	116	257	193
	6	5	8	-	13	3.6	269	8	288	13
	7	2	2	\cdots	4	1.1	291	1	284	4
	8	14	18	-	32	8.9	354	19	289	32
	$9+$	7	12	-	19	5.3	403	10	298	19
To	Total	156	292	-	358	100.0	243	205	258	355

Table 2. Age, sex and size data for Pacific harring captured by comercial purse seimes ia Numavachak Section, Togiak District, 1982.

Table 3 ．Age，sox and size data for Pacific herring captured by comarcial purse soines ia Togiak Section，Togiak District， 1982.

Table 4．Age，sex and size data for Peciftc herping captured by commercial purge seines in Hagenelstor Section，legiat Bistrict， 1982.

Sanple Period	$\begin{gathered} \text { Age } \\ \text { (ywars) } \end{gathered}$	Mali	Fenal	Unkクロッロ	Total		Percent of Total	Heas Ueight （gn）	Numberp Uetgived	Hean Standard Length （an）	Mantar Masusured
－ 1											
	2	－	－	－	－		－	－	－	－	
－	3	－	－	－	－		－	－	－－	－	－
	4	21	18	－	39		13.4	180	9	238	39
3／20－5／26	6	102	97	－	199		68.4	238	61	254	199
	6	3	9	－	12		4.1	276	4	297	12
	7	2	－	－	2		0.7	255	1	270	2
	8	11	11	－	22		7.6	356	10	286	22
	94	3	14	－	17		5.8	394	11	294	17
Period tetal		142	149	－	291		100.0	284	96	257	291

Table 5. Age, sex and size data for Pacific herring captured by connercial purse seines in Kulukak, Kunavachak, Togiak aid Hageneister. Sections, Togiak Dịstrict, 1982.

$\begin{aligned} & \text { Sanple } \\ & \text { Peried } \end{aligned}$	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$		- F-_Sex	UaKロowa	Total	Percent of Total	Heas Uaight (gn)	Munber Heighed	hasan Standard Length (an)	Nunter Moasurad
-6-6--6-6-	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	\square	-	-	-	-	\bigcirc
	4	26	20	-	46	21.4	184	46	242	46
3/13- 5/19	95	51	57	-	109	50.2	235	106	259	108
	6	4	5	-	9	4.2	268	9	269	. 9
	7	1	-	-	1	0.5	291	1	286	1
	8	8	17	-	25	11.6	357	19	293	25
	94	8	18	-	26	12.1	407	14	303	26
Period total		98	117	-	215	100.0	249	${ }^{195}$	265	215
5/20-5/26	1	-	-	-	-	-	-	-	-	
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	- -	-	-	-
	4	91	105	-	196	22.0	181	116	241	195
	6	241	270	-	511	57.4	235	268	257	509
	6	8	19	-	27	3.0	261	9	267	27
	7	3	5	-	8	0.9	252	3	272	8
	8	56	43	-	99	11.1	333	61	290	99
	$9+$	17	33	-	50	5.6	394	25	296	50
Poriad tot	otal	116	475	-	891	100.0	243	482	260	988
All periods	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	4	117	125	-	242	21.9	181	162	241	241
	5	292	327	-	619	56.0	235	374	257	617
	6	12	24	-	36	3.3	265	18	268	36
	7	,	5	-	9	0.8	262	4	274	9
	8	64	60	-	124	11.2	339	80	290	124
	94	25	51	-	76	6.9	399	39	298	76
Total		514	592	-	1106	100.0	245	677	261	1103

Table 6. Age, sex and gize data for Pacific herring captured by comereial gillanets in Kulukak gection, Togiak District, 1982.

Sample Period	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	male	-fansex_		Total	Percent of Total	Han Meight (gn)	number Heighed	Hean Standard Length (ma)	Number hascured
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	${ }^{-}$	\square	-	\square	-	\bigcirc	,	-	\bullet
	4	21	12	-	33	18.6	190	2	249	33
5/13-5/19	- 5	44	39	-	103	38.2	241	11	256	103
313- 310	6	5	1	-	6	- 3.4	-	-	263	6
	7.	1	1	-	2	1.1	$\stackrel{\circ}{\circ}$	-	280	2
	8	16	5	-	21	11.9	340	1	287	21
	$9+$	10	2 -	- -	12	6.8	342	2	290	12
Popiod total		117	60	-	177	100.0	253	16	259	177
	1	-	-	-	-	-	-	-	-	
	2	-	-	-	-	-	-	-	-	-
	3	\bullet	-	-	-	*	$\stackrel{-}{-}$	-	-	-
	4	31	32	-	93	24.0	179	13	243	82
	65	132	88	-	220	63.6	213	18	257	209
	6	5	8	-	13	3.8	229	1	271	11
	7	-	-	-	-	-	-	-	-	-
	8	12	8	-	20	5.8	296	3	286	19
	$9+$	3	7	-	10	2.9	390	1	275	10
Period total		203	143	-	346	100.0	213	36	257	331
all periods	1	-	-	-	-	-	\because	*	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	\because	-	-	-	-	5	12	115
	4	72	44	-	116	22.2	181	15	242	115
	55	196	127	-	323	61.8	223	29	256	312
	6	10	9	-	19	3.6	229	1	268	17
	7	1	1	-	2	0.4	-	-	280	2
	8	28	13	-	41	7.8	307	4	286	40
	$9+$	13	9	-	22	4.2	358	3	293	22
	Total	320	203	-	523	100.0	225	52	258	308

Table 7. Age, sax asd size data for Pacifle haprring captured by comaercial gillmets in Menavechak section, Togiak-District, 1982.

Sample Pirted	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	\qquad 98x \qquad Hale Fenale Uaknown			Total	Parcant of Total	Mean Ueight (gn)	Munber Heighed	Hean Standard Length (an)	Mumber hessured
5/20-5/26	1	-	-	--	-	-	-	-	-	-
	2	-	-	-	-	< -	-	-	-	
	3	-	\bullet	-	-	- -	$\stackrel{-}{-}$	-	$\stackrel{-}{\square}$	\because
	4	20	22	-	42	32.8	185	42	241	42
	65	33	38	-	71	55.5	222	71	261	71
	6	4	1	-	5	3.9	242	5	272	5
	7	-	-	-	-	-	-	-	-	-
	8	3	3	-	6	4.7	312	6	294	$\stackrel{8}{4}$
	$9+$	2	2	-	1	3.1	319	4	295	4
Period total		62	66	-	128	100.0	218	128	258	128

$6 t$	42	91	112	0.001	ES	1	91	98	reques popled	
1	262	-	-	$6 \cdot 1$	1	-	-	1	+6	
-	-	-	-	-	-	-	-	-	8	
-	-	-	-	-		-	-	-	6	
2	682	1	+02	$C^{\circ} \mathrm{s}$	ε	-	1	2	9	
68	Ct\%	14	112	$0^{\circ} \mathrm{E} 8$	6	1	81	82	S 9	92/s-02/s
5	202	1	522	$6^{\circ} 6$	5	-	-	s	1	
	-	-	-	-	-	-	-	-	ε	
-	-	-	-	-	-	-	-		i	
-	-	-	-		-	-	-			
peanseak deqund	(WH) 47 Bu 7 palepack8 부ㄹㅔㅔ	$\begin{aligned} & \text { peysten } \\ & \text { segwnk } \end{aligned}$	$\begin{aligned} & \text { (US) } \\ & \text { q4Sran } \\ & \text { wean } \end{aligned}$	$\begin{aligned} & \text { fesoj } 10 \\ & \text { suessed } \end{aligned}$	1esol		feve	-18甘	$\begin{gathered} \text { (sseeh) } \\ \text { osy } \end{gathered}$	i) poided aldues

Table 10. Age, sex and size data for Pacific herring captured by comoreial gillnets ia Kulukak, Munavachak, Togiak and Hageneistep Sactioas, Togiak bistrict, 1982.

Sanple Period	$\begin{gathered} \text { Age } \\ \text { (yoars) } \end{gathered}$	Male	--_Sex	Uak	Total	Perceat of Total	Hean Uaight (gm)	Number Yeighed		Number Measured
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	4	22	12	-	34	19.0	195	3	241	34
5/13-5/19	9	64	40	-	104	58.1	239	12	256	104
	6	5	1	-	6	3.4	-	-	263	¢
	7	1	1	-	2	1.1	-	-	280	2
	8	16	5	-	21	11.7	340	1	287	21
	$9+$	10	2	-	12	6.7	342	2	290	12
Period total		118	61	-	179	100.0	249	18	259	179
5/20- 5/26	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	4	92	73	-	165	23.7	184	91	242	164
	5	237	171	1	429	61.5	220	197	257	413
	6	15	12	-	27	3.9	238	13	268	24
	7	1	-	-	1	0.1	300	1	275	1
	8	23	19	-	42	6.0	331	25	290	41
	$9+$	13	20	-	33	4.7	384	23	300	33
Period total		401	295	1	697	100.0	230	350	258	676
All periods	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	4	114	85	-	199	22.7	184	94	242	198
	5	321	211	1	533	60.8	221	209	257	517
	6	20	13	-	33	3.8	238	13	267	30
	7	2	1	-	3	0.3	300	1	278	3
	8	39	24	-	63	7.2	332	26	289	62
	$9+$	23	22	-	45	5.1	380	25	298	45
Total		519	356	1	876	100.0	231	368	258	855

Table 11 . Age, sex and size data for Pacific harring captured by test purse seines is Kulukak Section, Togiak District, 1982.

Sanple Peried	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$		Fringex.	-ink-ova	Total	Percent of Total	Mean Naight (gn)	Number Ueighed	Mean Standard Length (an)	Muaber Measured
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	1	-	-	1	0.1	-	-	232	1
	4	102	121	-	223	21.9	193	36	242	223
5/13-5/19	95	263	275	-	538	52.8	238	135	258	538
	6	12	11	-	23	2.3	271	5	265	23
	7	2	3	-	5	0.5	274	1	278	3
	0	41	38	-	39	7.8	347	24	289	79
	94	20	30	-	50	4.9	407	14	298	50
Peried tot	tal	442	478	1	1039	100.0	87	1044	259	919
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	
	3	-	-	-	-	${ }^{-}$	-	-	-	-
	4	26	27	-	53	34.9	169	7	238	53
3/20-5/26	65	32	39	-	71	46.7	229	5	255	71
	6	2	2	-	1	2.6			275	4
	7	1	-	-	1	0.7		-	276	1
	8	4	6	-	10	6.6	308	3	208	10
	94	7	6	-	13	9.6	326	1	295	13
Period tot	dal	72	80	-	152	100.0	224	16	255	152
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	\bullet	-	-	-	-
	3	1	-	-	1	0.1	-	-	232	1
	4	128	118	-	276	25.8	190	43	241	276
All periods	5	299	314	-	609	56.9	237	140	237	609
	6	14	13	-	27	2.5	271	5	267	27
	7	3	3	-	6	0.6	274	1	278	6
	8	45	44	-	89	8.3	343	27	289	89
	$9+$	27	36	-	63	5.9	402	15	298	63
Tot	otal	513	558	-	1071	100.0	252	231	259	1071

Table 12. Age, sex and size data for Pacific herring captured by test purse seines in Hunavachak Section, Togiak Bistrict, 1982.

Sanple Periad	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	halo	-Fenelo	Unkava	Total	Perceat of Total	Hean Hoight (ga)	Nuntor Veighed	nem standard Leagth (a)	Number Heasured
	1	-	-	-	-	- -	-	-	-	\bullet
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	\bullet	-	0
	. 4	6	8	-	14	6.6	194	14	243	14
3/13-5/19	93	59	88	-	147	49.7	241	147	257	147
	6	2	4	-	6	2.8	270	6	266	t
	7	1	1	-	1	0.5	304	1	293	1
	8	9	13	-	22	10.4	352	22	297	22
	94	12	9	-	21	10.0	378	21	296	21
Peried latal		89	122	-	211	100.0	264	211	264	211
$3 / 20=5 / 26$	1	-	-	-	-	-	-	-	-	-
	2		-	-		-	-	-	-	-
	3	-	-	-	;	$\stackrel{\circ}{\circ}$	3	3		$\overline{3}$
	4	2	1	-	3	8.8	183	3	242	3
	65	2	11	-	20	58.8	208	20	254	20
	6	9	1	-	1	2.9	265	1	279	1
	7	-	-	-	,	-	-	-		-
	8	7	2	-	9	26.5	285	9	286	9
	$9+$	7	1	-	1	2.9	348	1	300	1
Period total		18	16	-	34	100.0	232	34	264	34
All pericds	1			-	-	-	-	-	-	-
	2	- -		-	\bullet	-	-	-	-	-
	3		-	-	-	-	-	7	-	7
	4	$\bar{\square}$	9	-	17	6.9	192	17	242	17
	ds 5	68	99	-	167	68.2	237	167	257	167
	6	68 2	5	-	7	2.9	269	7	268	7
	7	2	-	-	1	0.4	304	1	293	1
	8	16	15	-	31	12.7	332	31	297	31
	$9+$	12	10	-	22	9.0	377	22	296	22
	Tatal	107	138	-	245	100.0	260	245	264	245

Table 13. Age, sox and stze data for Pacipte herrins capturad by tast purse seines in Togiak Section, Togiak District, 1982.

sample Paried	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	Maie	Fenale	Unknewn	Total	Parcent of Total	Hean Uaight (gh)	Nuaber Heighed		Nunber Measured
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	4	14	15	-	29	18.6	201	29	242	29
5/13-5/19	95	55	71	-	126	59.2	245	126	257	126
	6	4	7	- -	11	5.2	278	11	269	11
	7	-	2	-	- 2	0.9	337	2	280	2
	8	16	8	-	24	11.3	359	- 24	289	24
	$9+$	9	12	-	21	9.9	396	21	298	21
Period total		98	115	-	213	100.0	269	213	264	213
5/20-5/26	1	-	-	-	-	-	-	-	-	\bullet
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	${ }^{\circ}$	$\stackrel{\square}{-}$	-	-	-
	4	-	3	-	3	8.8	194	3	238	3
	65	11	6	-	37	50.0	226	17	257	17
	6	-	-	-	-	-	-	-	-	-
	7	-	-	-	-	-	-	-	-	\%
	8	4	3	-	7	20.6	356	7	295	7
	94	5	2	-	7	20.6	358	7	291	7
Period total		20	14	-	34	100.0	277	34	268	34
All pariods	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	\bullet	$\stackrel{\square}{\circ}$	-
	4	14	18	-	32	13.0	200	32	242	32
	5	66	77	-	143	57.9	242	143	257	143
	6	4	7	. -	11	4.5	278	11	269	11
	7	-	2	-	2	0.8	337	2	280	2
	$\stackrel{1}{6}$	20	11	-	31	12.6	358	31	288	31
	$9+$	14	14	-	28	11.3	386	28	296	28
Total		118	129	-	247	100.0	270	247	244	247

Table 14. Age, sex and size data for Pacific herring captured by tast purse seines in Hageneister Section, Togiak District, 1982.

8anple Period	$\begin{gathered} \text { Ag』 } \\ \text { (y\&ery) } \end{gathered}$	Male	fons	-Vaknoma	Total	Parcent of Total	Hean Ueight (gn)	Member Ueighed	Mean Standard Langth (An)	Munber Measured
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	
	4	2	1	-	3	11.5	194	3	246	3
5/20-5/26	65	7	11	-	18	69.2	235	18	252	18
	6	-	-	-		69.2	23s	1	35	1
	7	-	-	-	-	-	-	-	-	
	8	1	2		3	11.5	318	3	282	3
	9*	-	2	-	2	7.7	396	2	283	2
Period tot	tal	10	16	-	26	100.0	252	26	237	26

Table 15. Age, sax and size data for Pacific herring captured by test purse seines in Kulukak, Muaavachak, Togiak and Hageneister Sections, Togiak District, 1982.

Table 17. Age, sex and stze data for pacific herring captured by variable nesh gillnets in Muavavachak Section, Togiak District, 1982.

Sample Period	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	Male	Female	Unknown	Total	Percent of Total	Hean Height (gn)	Nunter Heighed	Meap Standord Length (nn)	Nunber Measured
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-		-	-	-	-	-	-	-
	4	2	3	-	5	16.1	-	-	242	5
3/13-5/19	95	9	5	-	14	45.2	-	-	259	13
	6	-	1	-	1	3.2	-	-	270	1
	7	1	-	-	1	3.2	-	-	266	1
	8	3	5	-	8	25.8	-	-	292	8
	$9+$	1	1	-	2	8.5	-	-	293	2
Period tot	otal	16	15	-	31	100.0	-	-	268	30
5/20-5/26	1	-	-	-	-					
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	4	7	2	-	9	13.4	174	9	236	9
	5	20	22	-	42	62.7	235	42	254	42
	6	1	3	-	4	6.0	275	4	267	4
	7		-	-	-	6.0	-	-	-	-
	8	4	3	-	7	10.4	349	7	283	7
	$9+$	5	-	-	5	7.5	403	5	297	5
Period tetal		37	30	-	67	100.0	253	67	259	67
All periods	1	-	-	-	-	-	-	\bullet	-	-
	2	-	-	-	-	-	-	\cdots	-	-
	3	-	-	-	-	-	-	-	-	-
	4	9	5	-	14	14.3	174	9	239	14
	5	29	27	-	56	57.1	235	42	253	35
	6	1	4	-	5	5.1	275	4	267	5
	7	\%	-	-	1	1.0	-	-	266	1
	9	7	8	-	15	15.3	349	7	288	15
	$9+$	6	1	-	7	7.1	403	5	296	7
Total		53	45	-	98	100.0	253	67	262	97

Table 19. Age, gex and size data for Pacific herring captured by connercial gillnets in Security Cove District, 1982.

$\stackrel{\text { g }}{\text { d }}$		＋	（
$\frac{4}{4}$		\％	～ャーvベญ
－	三岀荌	N	NW1NさN
－	，	－	＇＇＇＇．＇＇
\％		ミ	－い－ヵが
$\stackrel{\square}{\circ}$		$\stackrel{\rightharpoonup}{\circ}$	
$\stackrel{\sim}{4}$		～	
ํㅐํ		\pm	．$\stackrel{\rightharpoonup}{\square}$
M		N	
⿹ㅡㄴ		\pm	\rightarrow－${ }_{\text {－}}^{\text {¢ }}$ ，

881	672	881	$\varepsilon 12$	0.001	881	1	1	91	reqoq poiad	
ε	582	ε	2rs	$9 \cdot 1$	ε	－	${ }^{2}$	1	＋6	
ε	${ }^{882}$	ε	£ $2 ¢$	$9 \cdot 1$	ε	－	2	1	8	
	992	τ	n2	$1 \cdot 1$	τ	－	1	1	6	
tr	192	2	2rz	$8 \cdot 21$	t2	－	6	$s 1$	$219-22 / 5$	
811	brz	811	2 2	$8 \cdot 29$	811	1	or	4		
81	122	日	sく1	2．02	85	－	4	12	，	
－	－	－	－	－	－	－	－	－	ε	
－	－	－	$:$	：	：	$:$	－	－	2	
									te70\％popsud	
291	vsz	891	£ 2	0.001	891	－	59	001		
S	162	5	298	$1 \cdot 8$	5	－	－	s	＋6	
01	862	01	508	$1 \cdot 9$	01	－	－		8	
El	＜sz	\＆ı	$6 \Sigma 2$	$0 \cdot 8$	\＆1	：	\bar{z}	01	$\stackrel{9}{9}$	
22l	zsz	821	H12		ع21	－	6	\cdots	5 92／s－02／5	
21	$8 \Sigma \Sigma$	21	94	$\bullet \cdot$	21	－	6	s	ε	
－				－		－				
－	－	－	－	－	－	－	－	－	2	
$\begin{aligned} & \text { posanseory } \\ & \text { Jocqunn } \end{aligned}$		$\begin{aligned} & \text { poysion } \\ & \text { sequnn } \end{aligned}$		$\begin{gathered} \text { TequI do } \\ \text { zaigase } \end{gathered}$	reqod		n-ive		(sseech	$\text { () } \begin{gathered} \text { porsaid } \\ \text { ordues } \end{gathered}$

Table 21．Age，sex and size data for Pacific herring captured by connercial gillnets in
 a

Table 24. Age, sex and size data for Pacific herring captured by connercial gillnets in Cape Romanzof iistrict, 1982.

Sanple Period	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	Male	Fenale	Unknown	Total	Percent of Total	Mean Height (gn)	Number Veighed	Mean Standard Length (ตล)	Nunber Measured
3/27-6/ 2	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	:	-	-	-	-	-	-
	4	1	-	-	1	1.1	-	-	245	1
	25	22	21	14	57	65.5	-	-	244	57
	6	10	3	9	22	25.3	-	-	248	22
	7	2	-	1	3	3.4	-	-	267	3
	8	2	-	1	3	3.4	-	-	273	3
	$9+$	-	-	1	1	1.1	-	-	300	1
Period total		37	24	26	87	100.0	-	-	248	87
---m-------										
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	4	19	21	-	40	15.3	-	-	227	40
	95	66	106	-	172	65.9	-	-	240	172
	6	17	13	-	30	11.5	-	-	247	30
	7	1	2	-	3	1.1	-	-	259	3
	8	6	3	-	11	4.2	-	-	276	11
	$9+$	1	1	-	5	1.9	-	-	293	5
Period total		110	151	-	261	100.0	-	-	241	261
$6 / 10-6 / 16$	1	-	-	-	-	\bullet	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	1	-	1	0.4	-	-	199	1
	1	20	22	-	42	16.1	167	1	229	42
	65	82	90	-	172	67.2	200	15	239	172
	6	20	8	-	28	10.9	223	1	251	28
	7	-	1	-	1	0.4	-	-	272	1
	8	2	4	-	6	2.3	302	1	269	6
	$9+$	4	2	-	6	2.3	280	1	280	6
Period tot	otal	128	128	-	256	100.0	209	19	240	256
All periods	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	,	-	-	\%	-
	3	-	1	-	1	0.2	7	,	199	1
	4	40	43	,	83	13.7	167	1	228	83
	5	170	217	14	401	66.4	200	15	240	401
	6	47	24	9	80	13.2	223	1	249	80
	7	3	3	1	7	1.2	-		265	7
	8	10	9	1	20	3.3	302	1	274	20
	$9+$	5	6	1	12	2.0	280	1	287	12
Total		275	303	26	604	100.0	209	19	242	604

Sampe Seriod (ysare)		Tota	${ }_{\text {Prer }}^{\text {Pratat }}$		Humor		number
$\begin{array}{r} \\ 3 / 27-6 / 2 \\ \\ \hline\end{array}$							
Perioc total	126119	246	100.0	22	246	${ }^{29}$	24
					$\begin{aligned} & 29 \\ & 97 \\ & 10 \\ & 10 \\ & 18 \\ & 182 \\ & \hline 32 \end{aligned}$		20 31 40 10 12 12 12
Perriod totat	108124	232	100.0	215	232	24	231
		1 20 20 11 1 10 10			17 20 46 14 10 10		10 20 10 10 10 10
Period total	${ }^{6}$ 58	19	100.0	193	${ }^{118}$	237	19
	2 ${ }^{2}$ 2 1 6 1 2	1 \vdots \vdots 1					
Period totat	4 10	14	100.0	${ }^{89}$	14	195	14
Total	299311	${ }^{61}$	100.0	${ }^{213}$	${ }_{610}$	$2{ }^{212}$	${ }_{608}$

Table 26 . Age, sex and size data for Pacific herring cantured by comercial gillnets in St. Hichael Subdistrict, Horton Sound Districts 1982.

Sanple Period	Age (years)	Mäa	Fenale	Unk nown	Total	Perceat of Total	Hean Ueight (gn)	Kunber Veighed	Mean Standard Lergth (an)	Nunber Measured
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	
	3	-	-	-	-	-	-	-	-	
	4	52	25	- -	77	27.1	167	75	229	75
6/3-6/9	95	86	75	-	161	56.7	199	155	244	157
	6	17	15	-	32	11.3	235	31	256	31
	7	3	-	-	3	1.1	253	3	264	3
	8	6	1	-	7	2.5	265	6	266	6
	$9+$	4	-	-	4	1.4	298	4	274	4
Period total		168	$116:$	-	284	100.0	197	274	242	276

Table 27. Age, sex and 522 data for Pacific herring captured by comercial gillnets in Unalakleet Subdistrict, Norton Sound District, 1982.

Sanple Period	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	Mäe	Fenale		Total	Percent of Total	Hean Height ($\mathrm{g} \\|$)	Number Ueighed	Mean Standard Length (nn)	Nunber Heasured
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	4	6	8	-	14	43.8	143	14	222	14
5/27-6/ 2	25	7	11	-	18	56.3	145	18	222	17
	6	-	-	-	-	-	-	-	-	-
	. 7	-	-	-	-	-	-	-	-	
	8	-	-	-	-	-	-	-	-	-
	$9+$	-	-	-	-	-	-	-	-	-
Period to	otal	13	19	-	32	100.0	144	32	222	31
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	4	16	6	-	22	21.8	184	10	233	22
6/ 3-6/9	95	39	22	-	61	60.4	201	39	240	61
	6	11	2	-	13	12.9	230	9	251	13
	7	2	-	-	2	2.0	273	2	263	2
	8	2	-	-	2	2.0	273	2	266	2
	$9+$	-	1	-	1	1.0	286	1	275	1
Period to	0tal	70	31	-	101	100.0	208	63	241	101
	2	-	-	-	-	-	-	-	- -	-
	3	-	-	-	-	-1	-	-	-	
	4	22	14	-	36	27.1	160	24	229	36
All periods	55	46	33	-	79	59.4	183	57	236	78
	6	11	2	-	13	9.8	230	9	251	13
	7	2	-	-	2	1.5	273	2	263	2
	8	2	1	-	2	1.5	273	2	266	2
	$9+$	-	1	-	1	0.8	286	1	275	1
Total		83	50	-	133	100.0	187	95	237	132

Table 29. Age, sex and size data for Pacific herring captured by comnertial gillnets in Cape Denbigh Subdistrict, Morton Sound District, 1982.

Sanple Peried	Age (yesrs)	Male	Fenale	Unknown	Total	Perceat of Total	Hean Height (gn)	Nunber Uleighed	Hean Standard Length (mH)	Ruaber hazsured
8/10-6/16	2	-	-	-	-	-	-	-		
	3	\bullet	-	-	-		5			
	4	17	17	-	34	15.5	165	28	229	34
	6	99	63	1	163	74.1	183	124	238	163
	6	9	6	1	15	6.8	210	15	250	15
	7	1	1	-	2	0.9	275	1	264	2
	8	1	5	-	6	2.7	270	4	268	6
	$9+$		-	-	-	-	-	-	-	-
Period total		127	92	1	220	100.0	185	172	238	220

Table 29. Age, sex and size data for Pacific herring captured by commercial gillaets in St. Nichael, Unalakleet and Cape Denbigh Subdistricts, Morton Sound District, 1982.

$\begin{aligned} & \text { Sanple } \\ & \text { Period } \end{aligned}$	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	Mà	-Fe_Sax	Unknoun	Total	Percent of Total	hana Neight (gn)	Nuaber Ueighed	Hean Standard Length (ma)	Nunber Heasured
	1	-	-	-	-	-	-	-	-	-
	2	-	-	- -	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	\because
	4	6	8	-	14	43.8	143	14	222	14
5/27-6/2	25	7	11	-	18	56.3	145	18	222	17
	8	-	-	-	-	-	-	-	-	-
	7	-	-	-	-	-	-	-	-	-
	8	-	-	-	-	-	-	-	-	-
	9+	-	-	-	-	-	-	-	-	-
Period tot	otal	13	19	-	32	100.0	144	32	222	31
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	\bullet	-	-	-	-	-	-	-
	4	68	31	-	99	25.7	169	85	230	97
6/3-6/9	95	125	97	-	222	57.7	199	194	243	218
	6	28	17	-	45	11.7	234	40	255	14
	7	5	-	-	5	1.3	261	5	263	5
.-	8	8	1	-	9	2.3	267	8	266	8
	94	4	1	-	5	1.3	296	5	274	5
Period tot	otal	238	147	-	385	100.0	199	337	242	377
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	4	17	17	-	34	15.5	165	28	229	34
6/10-6/16	65	99	63	1	163	74.1	183	124	238	163
	6	9	6	-	15	6.8	210	15	250	15
	7	1	1	-	2	0.9	275	1	284	2
	8	1	5	-	6	2.7	270	4	268	6
	$9+$	-		-		2.	-	-	-	-
Period to	total	127	92	1	220	100.0	185	172	238	220
	1	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	4	91	56	-	147	23.1	165	127	229	145
All periods	5	231	171	1	403	63.3	190	336	240	398
	6	37	23	-	60	9.4	227	55	253	59
	7	6	1	-	7	1.1	264	6	263	7
	8	9	6	-	15	2.4	268	12	267	14
	$9+$	4	1	-	5	0.9	296	5	274	5
To	Otal	378	258	1	637	100.0	192	541	240	628

Table 30. Age, sex and siza data for Pacific herring captured by variable nash gillnets ia St. Hichael Subdistrict, Morton Sound District, 1982.

Table 31. Age, sax and size data for Pacific herring captured by variable nesh gillaets in Unalakleet Subdistrict, Morton Sound District, 1982.

Table 33 . Age, sex and size data for Pacific herring captured by variable mesh gillnets in St. Hichael, Unalakleet and Cape Denbigh Subdistricts, Nortan Sound District, 1982.

> Summary of Public Hearing on Herring FMP in Bethel, Alaska

November 10, 1982

The North Pacific Fishery Management Council held a public hearing on revisions to the Herring FMP in Bethel, Alaska on November 10, 1982. The Council was represented by Rudy Petersen, Leroy Sowl and Clarence Pautzke. The following people attended:

Moses Ayagalria	Napakiak, AK 99634
Paul Kiunya	Kipnuk, AK 99614
John I. Nicori, Sr.	Kwethluk, AK 99621
Raymond C. Christiansen	Bethel Calista Corp.
Axel C. Johnson	Emmonak, AK 99581
	Task Force Member
Harry Wilde, Sr.	Mt. Village, AK 99632
Issac Hawk	Eek, AK 99578
Ralph Horn	Bethel, AK 99559
Frank Demantle, Sr.	Kuskokwim United Fishermen Assn.
Ron Southern	Bethel, AK 99559
Mark John	United Village of Nelson Island
Paul John	United Village of Nelson Island
Jack Williams	Mekoryuk, AK 99630
Norman Cohen	Nunam Kitlutsisti
Stella Davey	Alaska Native Foundation
	Fisheries Program
Nels Alexie	Kuskokwim Community College
	P.O. Box 368
	Bethel, AK 99559
George Hert	YKHC, Bethel, AK 99559
Mike Williams	AVCP Fisheries Task Force
DeeDee Jonrowe	ADF\&G, Bethel, AK 99559
Tony Vaska	State Representative
John R. Stone	Chevak, AK 99563
John Paul Jones	Nunam Kitlutsisti
Jesse Foster	Quinhagak, AK 99655

The following comments were received at the hearing:
Paul Kiunya, Sr.: Herring populations are low at Kipnuk and he strongly opposes an offshore fishery which might recreate problems associated with the Japanese fishery of the past. He is a subsistence user and does not want the stocks intercepted offshore. Commercial uses of herring are becoming important too.

Ralph Horn: Everybody opposes offshore fishing on mixed stocks.
Harry Wilde, Sr.: Against offshore fishery because it would intercept herring used locally. Chevak, Hooper Bay, and Seammon Bay derive cash income from the commercial herring fishery. These inshore fisheries must not be hurt.

Axel Johnson: Subsistence is a way of life for natives. Subsistence is their main source of food and must be protected.

Jesse Foster: Biological information is lacking on the impacts of an offshore fishery and management is more political than biological. Must keep harvest inshore. Does not support a high seas fishery. Made point that all age classes are used in the estimation of biomass but 1-3 year olds are too small to catch in gillnets. This could result in perceived underharvest.

John Stone: He asked how an offshore fishery would benefit the inshore fishery. He was concerned about the Board of Fisheries guidelines at Cape Romanzof.

Paul John: Subsistence is important to native village uses. Fish stocks were low at one point and only small herring came back. Nelson Island people use herring as food and are not in favor of offshore interceptions. Herring resource is as important to Nelson Islanders as having a steady job.

John Paul Jones: FMP revision was not delivered in time for adequate review. Natives need cash base to buy equipment, fuel and clothing and are just getting into the commercial herring fishery. He fears that an offshore allocation will hurt this developing source of much needed cash.

Ray Christiansen: He questioned the conditions under which the Regional Director and ADF\&G could open an offshore fishery north of $55^{\circ} 47^{\prime} \mathrm{N}$ before July 1 in Section 2.5.2.

Norman Cohen: The local concern is to protect the northern stocks. FMP revision moves in the right direction but does not go far enough. There is no recognition that fish not caught one year will come back to spawn another year and therefore are not surplus. He is still strongly opposed to any offshore fishery as long as it is necessary to limit the inshore fishery.

The Association of Village Council Presidents passed a resolution calling on the North Pacific Council to reject those portions of the FMP which authorize a high seas trawl fishery for herring (see attachment).

ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS FISHERIES TASK FORCE

REQUESTING THE NORTH PACIFIC FISHERY MANAGEMENT COUNCIL NOT TO ACCEPT PORTIONS OF THE BERING/CHUKCHI SEA HERRING PLAN WHICH PROVIDES FOR AN OFFSHORE, HIGH SEAS TRAWL HERRING FISHERY

WHEREAS, the Association of Village Council Presidents Fisheries Task Force is made up of representatives of the fishing industry from throughout the Yukon-Kuskokwim Delta; and

WHEREAS, the North Pa of c Fisheries Management Council is presently considering a Berıng/Chukchi Sea Herring Management Plan which includes . provisions for an offshore, high seas, trawl herring fishery on mixed stocks of herring. which winter in the eastern Bering Sea; and

WHEREAS, there are coastal villages of the Yukon-Kuskokwim Delta which rely upon the herring stocks of the eastern Bering Sea for their nutritional needs, especially in the villages of Nelson Island and vicinity; and

WHEREAS, the herring resource is becoming an important source of income for some coastal villages because of the new commercial herring fisheries in the Cape Romanzof and Cape Newenham areas; and

WHEREAS, when high seas herring fishing was conducted in the early 1970's, primarily by the Japanese and Russian fishing vessels, there was an extreme reduction in the amount of herring which spawned along the Yukon-Kuskokwim delta; and

WHEREAS, this reduction caused a hardship on those villages which rely upon the herring for food; and

WHEREAS, fishing on mixed stocks of herring can be very dangerous to the continued health of the resource, especially to the smaller herring stocks which spawn north of Cape Newenham, but which commingle with the larger Bristol Bay stock on the high seas during the winter months y and

WHEREAS, herring which are not harvested in the inshore subsistence and commercial fisheries will return again to the spawning grounds in later years and will again be available for harvest there.

 খeこe ct ti: sse gorticns of the Erring Chukchi Sea Herring Management plan which authorize a high seas, trawl herring fishery.

Dated: November 11, 1982

[^1]
ALASKA DEPARTMENT OF FISH AND GAME DIVISION OF COMMERCIAL FISHERIES

STATEWIDE HERRING MANAGEMENT WORKSHOP REPORT TO THE ALASKA BOARD OF FISHERIES

STATEWIDE HERRING MANAGEMENT WORKSHOP REPORT

Introduction

The recent increase.in Alaska's herring harvesting, activities has brought. about increased demands on the Board of Fisheries and the Department's managers alike. The Board of Fisheries, charged with the responsibility to fairly allocate the harvestable surpluses to competing users and gear groups must attempt to do so in a practical manner to ensure orderly fisheries and not to jeopardize the health of the resource. The Department managers' must ensure harvest levels are sustainable and do not interfere with the reproductive needs of contributing stocks. These separate, but interrelated, responsibilities must be highly coordinated if the commen management objectives are to be achieved. Increased fishermen participo. tion and gear efficiency in several of Alaska's herring fisheries have compelled the State to fine tune regulations and management strategies. During the 1981 December and 1982 January Board of Fisheries proceedings some differences were perceived in management strategies that were being used in various areas of the State. Concern was expressed by the Board that perhaps a more consistent management approach would be desirable.

The Department concurred with the Board and agreed to convene an intradivisional herring management workshop to review and evaluate the strengths and weaknesses of our herring management program and to formulate recommendations for the Board's consideration. The workshop was subsequently held the last week of October in Anchorage with 32 Department scientists attending the two day session.

This report summarizes the major items addressed at the workshop, the important points raised during the panel discussions and a proposed herring management policy.

Summary of Panel Discussions

The workshop was structured into a series of four discussion panels set up to address major elements of herring management. The first panel was charged with reviewing and evaluating stock exploitation strategies that determine the surplus that can be harvested from a stock. Consideration was given to the need and value of varying exploitation levels according to stock status and to alternative exploitation strategies when a specific exploitation rate cannot be applied due to limited data.

The following points of agreement were reached.

1. Herring should not be managed at the MSY level (although calculations to determine the theoretical yield under various stock conditions would certainly provide useful information for setting exploitation rates).
2. If stock assessments are made, the exploitation rate should vary from 0 to 20% of the mature stock. Harvest of immature herring should be avoided.
3. If stock assessments are not made, a harvest ceiling should be set based upon historical sustained yield or other available information. A wide open fishery imithout harvest ceilings is to be avoided.
4. Specific criteriafor determining actual exploitation rates should include the following.
a. Stock abundance, e.g. the high end of the range of exploitation is warranted if stock is increasing or stable at what is considered an acceptably high level of abundance;
b. Age composition. It is desirable to maintain several age classes within a stock to dampen recruitment fluctuations.
c. Spawner-recruit relationship. Although this relationship is usually not well described, it is desirable to maintain a minimum level of spawning biomass, below which no harvest will be allowed, to avoid recruitment overfishing.
5. All harvests from the same stock must be included in calculations of acceptable exploitation rates. No "double dipping" should be allowed in any stock, i.e. harvests for sac roe, spawn on kelp, and food/bait within a single stock must fall within either an exploitation rate of $0-20 \%$ or the fixed ceiling for any one fishing year.

Much discussion was generated over determining the actual exploitation rate to use when trying to pick a value between $0-20 \%$. No general consensus could be reached in providing a set method, although it was agreed that the general principles outlined in $4 \mathrm{a}-\mathrm{c}$ above should be followed. Even so, the actual inseason management techniques only allow for relatively inexact achievement of set goals, e.g. attempts to obtain $\mathrm{E}=10 \%$ would actually achieve $10 \% \pm \times \%$. Therefore, $i t$ should be most important to first decide whether a harvest should be allowed, and then determine whether the allowable harvest should be set to achieve either a "low" ($10 \% \pm 5 \%$) or a "high" ($20 \% \pm 5 \%$) exploitation rate.

In general, it was felt that the unknown accuracy of assessments and poorly described biological relationships for most stocks were good reasons for holding maximum exploitation rates to 20%. Other evidence suggests that the 20% exploitation rate may be conservative enough to use as an upper
limit for herring harvests. Generally, natural mortality rates increase with increasing age. Estimated annual natural mortality rates range from 18\% at age 3 to 57% at age 8 in British Columbia and Southeast Alaska herring populations (Skud 1963, Tester 1955) and are thought to average 38\% for Bering Sea herring (Wespestadt 1978). Imposing a 20% exploitation upon such populations would result in total annual mortalities ranging from 34\% at age 3 to 66% at age 8 for southern stocks and averaging 50% for northern stocks. Since a maximum fishing mortality of 20% is equal to or less than most estimated natural mortality rates, a $0-20 \%$ exploitation should ensure that each age class remains within a population for several years.
$-$
The second discussion panel, entitled "Management Strategies to Achieve Exploitation Objectives and Board of Fisheries Allocations' considered the value and limitations of management strategies currently employed by the Department. The following consensus was reached on the major items discussed.

Emergency Order vs. Set Seasons. There should be no attempt to apply a universal approach to all fisheries and all situations. The decision to use one strategy over the other should depend on an evaluation of each fishery. The merits or disadvantages of each approach vary and may chañige through time as the fishery develops. Although the tendency has been to evolve from a system of set seasons to an eventual emergency order approach this should not become a requirement.

The following are important factors to consider when evaluating an emergency order strategy.

1. The emergency order approach is most useful in fully developed fisheries where the potential for rapid harvest exists. Stocks involved are usually concentrated in a small area and can be readily defined and assessed.
2. The emergency order approach is not applicable in situations where stocks are small, mixed, scattered over broad geographical areas, and" cannot be economically assessed and evaluated. Set seasons in these situations tend to promote the most orderly harvest and can spread it out over time and area. Usually fixed seasons are better in fisheries with small stocks with more or less static harvest ceilings and low effort. In some instances this can permit exploration and gradual development of otherwise unutilized stocks.
3. Requiring the use of emergency order management in fisheries with multiple gear types that are not separated by time or area can result in unintentional allocation between users because it tends to compress the harvest into a short time and the most efficient gear type will always have the advantage.

Allocation Strategies. There are presently no gear or user group allocation schemes that significantly limit management's ability to provide proper conservation of the stocks. Future reallocations or adjustments in
the harvests for adjacent fisheries of different market types (bait vs. sac roe) should be handled cautiously. More conservative approaches will be required if solid data is not available on the composition and potential double jeopardy of the affected stocks.

Strategies to Optimize Product Value. Due to the nature of herring roe fisheries, management actions often have a direct effect on product value and allocation among competing users. Strategies which attempt to optimize product value must be carefully considered so that all users may benefit equally. Decisions to implement management strategies to optimize product value should be made by the Board of Fisheries and take into account the variability of conditions that may be common to the fishery. Situations where value can be optimized and the conditions that should exist.

1. Fishery ordinarily will be large, intense, and with concentrated stocks.
2. Consensus of all processors and fishermen must be possible.
3. Sampling effort must be intense.
4. Calculations of recovery should be done by industry and not by the Department.
5. There is one specific situation where management could determine the product value. This would be where a fishery was closed to minimize the wastage or dumping of unmarketable fish, e.g., the dumping of immature or spawned out fish caught in gill net gear.
Pitfalls or situations where it is difficult to optimize product value.
6. It places an undue responsibility on the Department because optimizing market value requires making socioeconomic decisions. The staff does not normally consider or collect this type of economic data.
7. Trying to optimize value tends to concentrate the harvest until just prior to spawning and can result in the exceeding of capacity, or the harvest could be lost entirely due to weather or other factors. It can contribute to a wider range of error in management and could defeat efforts to conduct an orderly harvest.
8. There normally are different roe recovery requi rements among buyers. depending on their markets.
9. Where gear is not separated by time or area, trying to maximize value will result in unintentional allocation between the different gear types with the advantage going to the most efficient.
10. Because of the existence of fisheries where stocks can be of mixed maturities, it would be impossible for the Department to optimize value, in a gill net fishery especially.

Value of Herring as Food for Other Commercial Species. Although the importance of herring as a forage fish for other commercially important species is recognized, there is no hard data available to measure this and make a specific allowance for the need in developing appropriate harvest strategies. In the absence of this data, current harvest rates are maintained at conservative levels to allow for this and other needs. Minimum threshold levels have also been established, where possible, to safeguard against stock depletion and failure.
A third discussion panel addressed the question of what constitutes a "stock" and evaluated the current assessment techniques used to describe stock size.

Stock Definition. The task of defining "stock" for management purposes as it would äpply to fierring populations proved to be difficult one. While it appeared that no single definition uniformly fit managers' needs for-all areas in the State, the definition used by the Canadians and the Southeastern staff was generally thought to be the best for management purposes. The definition states: "A stock is defined as a concentration of herring occupying the same distinct fishing ground during the fishing season over a succession of years." Clearly, the important element of defining a herring stock is to prevent double jeopardy harvests between various fisheries on a particular stock. Refinements in the stock concept will be attainable as the Department gains knowledge and understanding of herring populations through stock separation studies and age class composition comparisons.

Biomass Assessment. Methods of stock measurement were discussed in detail with the associated limitations identified for the various techniques used. In general, aerial assessments are influenced by air and sea conditions, spotter experience, herring schooling behavior, on the ground calibrations, species diversity, and conversion of instantaneous counts to seasonal counts. Even with these limitations aerial assessments are considered a viable method of assessment in the right circumstances. Research needed to strengthen this approach in areas where applied include tagging studies, increased calibration of survey estimates to biomass, and on the grounds species determination. an
The use of hydroacoustic equipment to assess herring abundance was extensively discussed. Present hydroacoustic assessment. gear used in Southeastern and Prince William Sound work well for stocks that form predictable concentrations in the same general locations in deep water from year to year but lack the ability to assess herring in rapidly fluctuating situations in shallow water. Other types of hydroacoustic gear now available on the market are more versatile and may provide solutions to assessment problems in the more dynamic situations common to other areas of the State. Workshop attendees were shown a number of new units capable of abundance assessment applications. Feasibility tests will be attempted as funding will allow.

The fourth discussion panel entitled "Need and Value of Developing a Consistent Statewide Management Strategy/Policy" was the focal point of the two day workshop. The panel reviewed prior Board of Fisheries policy statements on herring, policy statements addressing other pertinent fisheries, and the current herring management practices of the Department. The panel concluded that a statewide policy statement on herring management was necessary to assure a level of consistency in current area management practices. Of particular concern was clearly defining the responsibilities of the Board and Department. Hence, the draft statement attempts to specify the responsibilities of both entities. The policy panel focused on four major management concerns: 1) harvesting strategies which provide guidance and flexibility for existing as well as developing fisheries, 2) general principles of pröduct quality and standards which are adopted by the Board and implemented inseason by the Department, 3) management and allocation problems resulting from mixed stock fisheries, and 4) conservation consequences of multiple annual harvests on a single stock. Findings of the first two panels, "Stock Exploitation Strategies" and "Management Sh ${ }^{2}$ Strategies to Achieve Exploitation Objectives" were reviewed and formed the key elements of the, draft policy statement presented in this report.

APPENDIX I.

DRAFT

ALASKA BOARD OF FISHERIES
 AND
 ALASKA DEPARTMENT OF FISH AND GAME

POLICY ON HERRING RESOURCE MANAGEMENT

The purpose of this statement is to inform the public on the managemen \hat{t}°-of Alaska's herring fisheries. This policy is intended to consolidate an' unify previsus Board policies and pepartment practices on statewide herring management. The pölicy is necessitated by the recent, rapid expansion of the herring fishery, especially för roe extraction. Many new herring fisheries have developed, often without adequate biological information necessary for management. Fishing effort and efficiency has increased in individual herring fisheries and user group conflicts exist. Enforcement is generally minimal or nonexistent in many fisheries. In view of the above factors, a conservative yet flexible approach is required to manage . the herring fisheries.

The primary task of the Department is to manage the herring stocks based on biological considerations while executing the harvest strategies of the Board. Harvest strategies which optimize economic return, establish criteria for product quality, and allocate the harvest among competing user groups are the purview of the Board. These strategies for specific herring fisheries are governed by policy, regulation, or area management plans approved by the Board. The Department will manage the herring fisheries of the State following the guidelines set forth by the Board. As needed, the Department will prepare news releases to better inform the public on the conduct of specific fisheries.

The policy of the State is to encourage the full utilization of the Alaska herring resource by harvesting the Optimum Yield (OY) and allocating such harvest among beneficial uses. When allocating harvest the Board will take into consideration any customary and traditional subsistence uses of herring. The herring $O Y$ is that level of harvest which ensures the sustained yield of the resource and establishes stability by eliminating, as much as possible, extreme fluctuations in annual harvest. The Board recognizes that this policy will produce an 0 which is probably less than the maximum "physical yield.

Achievement of this management objective depends upon the maintenance of herring stocks that are comprised of various age classes rather than creat Ing a fishery dependent upon recruitment. Maintaining a controlled harvest on several yeart classes will reduce fluctuations associated with variable recruitment. The benefits of maintaining several large year classes in the fishery are most apparent when weak year classes enter the fishery. When year classes have been partially protected by controlling harvest rates, there will be enough older herring to reduce the decline in catch and maintain adequate brood s \qquad

The goal of full utilization of the Alaska herring resource requires both the collection of adequate scientific information on the resource and capitalization of the harvesting and processing sectors. As more scientific information is available to describe a fishery, the harvest should be adjusted to a level which reflects that increased knowledge. In situations where scientific data are poor, the harvest should be more conservative to reflect the concern for overfishing. The Board directs the Department to formulate conservative harvest limits for those fisheries, particularly developing fisheries, where little scientific information is available. This conservative management strategy will allow the industry the opportunity to develop new herring fisheries while minimizing the risks of overcapitalization. As new information is collected then the harvest strategy may be liberalized.

Depending upon the level of information available to describe a specific herring resource, one of two techniques may be employed to set the amount of harvest. In situations where a herring stock can be adequately assessed, the harvest will be based upon applying certain exploitation rates to individual herring stock levels. Exploitation rates on individual herring stocks may vary from zero to twenty percent, depending on such factors as the size of the stock (relative to historical averages), the age composition of the stock, the amount of spawn the stock has produced and the number and type of fisheries that may occur on a stock. Exploitation rates at the low end of the range should be applied to small stocks and those that contain younger age classes of mature herring which will return to spawn in succeeding vears. Converseir, exploitation rates at the high end of the range should be applied to large stocks and those which contain multiple age classes, especially older age classes that may be lost to succeeding harvests due to natural mortality. Minimum levels of biomass (based on a spawner recruitment relationship or other appropriate methodology) should be established to assure that reproductive requirements will be met prior to allowing a fishery to occur. A lower harvest rate may al so be necessary where a stock of herring may be utilized for other beneficial uses (e.g. as a forage fish for other commercially valuable species, a major subsistence fishery, or a roe-on-kelp fishery). A maximum twenty percent exploitation rate may be applied to an individual stock in any one fishing year. This rate reflects uncertainties of variable recruitment and natural mortality vis a vis the socioeconomic goal of producing the optimum yield. In those situations where herring stocks cannot be adequately assessed, then harvest levels should be established. These levels should be based on average catches, historical harvest levels, or other appropriate methods. Additionally, harvest quotas may be established to allocate a portion of the harvest for specific uses.

The development or expansion of mixed stock herring fisheries and those fisheries which occur upon stocks which have been previously fished in that year, are discouraged. Except in situations where adequate scientific
information is available to prevent the overharvest of discrete stocks, existing mixed stock or multiple harvest fisheries should be eliminated or significantly reduced.

Management measures, such as opening and closing of fishing seasons and areas, and allowable fishing time, should be employed to minimize wastage of herring. However, processors and fishermen should ensure that sufficient processing capacity and markets exist prior to fishing to avoid potential wastage. It is recognized that wastage may occur due to unavoidable situations such as storms, spawning conditions, and processing problems. When opportune, the Board may develop specific management plans which optimize herring product quality (e.g.; roe percentages, size of fish, oil and fat con ent). Criteria for determining product quality will be devel oped by the Board and implemented by the Department. However, it is recognized that unforeseen or unpredictable circumstances such as weather or spawning conditions may result in reduced product quality or harvests.

List of Herring Workshop Participants, October 25, 1982.

DEPARTMENT OF FISH AND GA ME

OFFICE OF THE COMMISSIONER
 P.O. BOX 3-2000 JUNEAU, ALASKA 99862 PHONE:

REPORT TO THE ALASKA BOARD OF FISHERIES AND NORTH
PACIFIC FISHERY MANAGEMENT COUNCIL CONCERNING BERING SEA/ALEUTIAN ISLANDS HERRING MANAGEMENT

Following is a brief summary of three attached reports:
(a). The 1982 Bering Sea Coastal herring summary

The Bering Sea coastal herring fishery includes the fishing districts of Togiak, Goodnews Bay, Security Cove, Nelson Island, Cape Romanzof, and Norton Sound. The commercial fishery began May 14 in the Togiak district and progressed northward with the last delivery made June 10 in the Norton Sound district. Total commercial harvest was $24,897 \mathrm{mt}$. Additionally, the spawn on kelp fishery harvested 141.4 mt . Ex-vessel value was estimated at $\$ 7.9$ million. Average price paid to the fishermen was $\$ 300$ to $\$ 400$ per mt. Nelson Island subsistence harvest was 97 mt . Total biomass of the commercially exploited stocks was $116,000 \mathrm{mt}$; the overall exploitation rate during the roe fishery was 21.5%. The Nelson Island biomass was estimated at $3,600 \mathrm{mt}$. Four and five year old fish dominated the spawning biomass. Age 5 fish comprised approximately 56% of the harvest; age 4 comprised about 17% of the catch. The outlook for the 1983 season is generally similar or somewhat less than 1982. There is no indication that good recruitment can be expected.
(b). The 1982 Aleutian Islands Coastal herring summary

During 1981, 639 mt of herring were harvested in the Aleutian Islands, the first such landings since the fishery ended in 1945. The 1982 harvest which was sold as food and bait, was $3,234 \mathrm{mt}$. This harvest, by seven seine vessels, occurred in State waters between August 5 and September 12. Average price was approximately $\$ 300$ per mt; total ex-vessel value was approximately $\$ 1$ million. Herring was delivered to Dutch Harbor and Unalaska processors. No biomass estimates were made. The catch was dominated by age 5 herring.
(c). Aleutian Islands herring stock separation study

Due to rapid development of the Aleutian Island food and bait herring fishery during August and September 1982, significant concerns over the origin of stocks necessitated an intensive short term research study. The Department contracted with the University of Washington's Fisheries Research Institute to evaluate stock of origin in the Aleutian Island fishery using scale pattern analysis. Scale patterns and back calculated lengths were used to classify age 5 herring caught in the Dutch Harbor food and bait fishery to stock of origin. Five standards were used: Norton Sound, Cape Romanzof, Nelson Island, Togiak, and Port MoIler. Norton Sound and Cape Romanzof fish were not detected in the Dutch Harbor samples. Overall classificatory accuracy was 73.4% for a three way analysis using Nelson Island, Togiak, and Port Moiler stocks. Point estimates for the origin of all Dutch Harbor age 5 herring scales were 43.3\% Togiak, 35.4% Nelson Island, and 21.3\% Port Moiler, with broadly overlapping 90\% confidence intervals.

PACIFIC HERRING STOCKS AND FISHERIES
 IN THE EASTERN BERING SEA, ALASKA, 1982

A Report to the North Pacific Fisheries Management Council

November 1982

Prepared by:
Stephen M. Fried,
Craig Whitmore, and
Daniel Bergstrom

Alaska Department of Fish and Game Division of Commercial Fisheries 333 Raspberry Road Anchorage, Aiaska 99502

This report summarizes current information on eastern Bering Sea Pacific herring stocks and fisheries within Alaskan waters. A more detailed account of this information is presented in Fried et al (1982).

COMMERCIAL FISHERIES

A total of $24,897 \mathrm{~m} . \mathrm{t}$. of Pacific herring were harvested in eastern Bering Sea Commercial Fishing Districts during 1982 (Figures 1 and 2, Table 1). This was the largest total harvest recorded since these fisheries began in the 1960's. Exploitation of estimated available spawning biomass was 21.5% (Table 2). Wastage of herring was estimated to be less than $500 \mathrm{~m} . \mathrm{t}$. for all Districts combined. Most documented wastage was due to storms and vessel mishaps rather than to dumping of unwanted herring. Numbers of buyers and fishermen increased in Togiak District, but decreased in all other Districts (Table 3). Spawn on kelp harvests in Togiak and Norton Sound Districts totaled 141.4 m.t. (Table 4). Value of total herring and spawn on kelp harvests to fishermen was estimated to be $\$ 7.9$ million.

A total of $2,939 \mathrm{~m} . t$. of herring was also harvested in the vicinity of Unalaska Island during 1982 (Table 1). Studies are currently underway to determine whether herring harvested during this fishery belong to stocks which spawn and are harvested in Togiak, Security Cove or Goodnews Bay Districts.

SUBSISTENCE FISHERIES

A total of 97 m.t. of Pacific herring were harvested by 129 families from seven villages in the Nelson Island and Yukon-Kuskokwin Delta area (Table 5).

STOCK ASSESSMENT

Methods

Aerial surveys were conducted within all Fishing Districts, except Cape Romanzof, to determine relative abundance, distribution and estimated biomass of herring schools. Basic methods of data collection were similar to those used in previous years (Barton and Steinhoff 1980). A total of 172 hours was spent in aerial assessment of herring spawning stocks: 63 hours in Togiak, 28 hours in Security Cove/Goodnews Bay, 6 hours in Nelson Island and 75 hours in Norton Sound. In-season stock size estimates could only be made for Togiak and Norton Sound Districts due to weather and water conditions. Post-season estimates were made for the remaining Districts based upon catch rates and spawn deposition during the season (Table 6).

Availability of a chartered helicopter on the Togaik fishing grounds greatly aided test fishing, catch sampling, fishery monitoring and assessment activities. Unfortunately, mechanical failures prevented use of the helicopter during most of the time period chartered purse seine vessels were available; tonnage data on only one herring school was obtained during the season (Table 7). Conversion factors of 1.2 (water depth 5 m or less), 2.5 (water depth greater than 5 m) and 3.0 (water depth greater than 8 m) per $50 \mathrm{~m}^{2}$ school surface area were used in analysis of Togiak District aerial survey data. Conversion factors of 2.4 or 3.1 m.t. $/ 50 \mathrm{~m}^{2}$ were used for all other Districts.

Test fishing with variable mesh gillnets and sampling of commercial landings were conducted in all Fishing Districts to determine age, size and sexual maturity of herring. Additionally, chartered purse seine vessels were used to collect herring samples within Togiak District. A total of 10,739 herring was sampled during 1982.

Results

Spawning populations in most Districts were lower than those observed in 1981 (Table 6). A total of $119,600 \mathrm{~m} . \mathrm{t}$. of herring was estimated to have been present during the 1982 spawning season. Spawn deposition was similar to that observed in 1981, with totals of 66,8 and 37 linear km of milt sighted during aerial surveys in Togiak, Security Cove and Norton Sound Districts, respectively. Age composition analyses indicated that five year old herring (1977 year class) comprised 55% of the total spawning population (Figures 3 and 4). Four year old herring (1978 year class) comprised 18\% of the spawning population.

Peak periods of herring abundance occurred 19-23 May in Togiak District, 25-30 May in Security Cove and Goodnews Bay Districts, and 6-14 June in the various Subdistricts of Norton Sound District. Ice ard cold water temperatures delayed inshore migration and onset of spawning as compared to 1980 and 1981 in all Districts.

OUTLOOK FOR 1983

Based upon a moderate recruitment of four year old herring and the continued large returns of five year old herring in 1982, the Department of Fish and Game anticipates a harvestable surplus of herring to be available in all Districts in 1983. However, since no methods are available to reliably forecast actual returns (or to estimate recruitment), harvest levels will be adjusted during the season according to observed herring biomass. If it is not possible to determine herring abundance by using aerial surveys, stock condition will be assessed using information from test and commercial catches along with spawn deposition observations.

Although increased use of collected fishery statistics in mathematical models may provide useful information for predicting abundance trends of herring populations, further work is needed to refine real time stock assessment techniques. Offshore hydroacoustic and trawl surveys coupled with stock identification studies could provide pre-season stock size estimates. Underwater telemetry or tagging studies could provide needed information on herring movement patterns and spawning ground residence time to refine in-season stock size estimates. Inshore hydroacoustic surveys could provide a more cost effective method of obtaining conversion factor estimates than using chartered purse seine vessels.

LITERATURE CITED

Barton, L.H. and D.L. Steinhoff. 1980. Assessment of spawning herring (Clupea harengus pallasi) stocks at selected coastal areas in the eastern Bering Sea. Alaska Department of Fish and Game Informational Leaflet No. 187. 60 p.

Fried, S.M., C. Whitmore and D. Bergstrom. 1982. Pacific herring stocks and fisheries in the eastern Bering Sea, Alaska, 1982: A report to the Alaska Board of Fisheries. Alaska Department of Fish and Game mimeo. 30 p.
)
Table 1. Herring and herring spawn on kelp harvests in metric tons by U.S. commercial fishermen in the eastern

Table 2. Estimated biomass and commercial harvest of Pacific herring in eastern Bering Sea fishing Districts, Alaska, 1978-1982.

District		Biomass (m.t.)	Harvest (m.t.)	Roe \%	Estimated Value (dollars)	\% Biomass Harvested
1982						
1981	Togiak	88,800	19,556	8.8	6,174,300	22.0
	Security Cove	4,600	737	9.3	271,000	16.0
	Goodnews Bay	2,400	441	9.5	187,900	18.4
	Cape Romanzof	4,400	596	9.3	221,700	13.6
	Norton Sound	15,800	3,567	8.8	1,046,200	22.6
	Total	116,000	24,897	8.9	7,630,100	21.5
1980	Togiak	143,900	11,374	9.1	3,988,000	7.9
	Security Cove	7,500	1,064	8.1	347,070	14.2
	Goodnews Bay	3,900	596	7.7	196,170	15.3
	Cape Romanzof	4,400	653	8.0	211,260	15.0
	Norton Sound	22,800	3,965	8.8	1,500,000	17.3
	Total	182,500	17,652	8.9	6,242,500	9.7
1979	Togiak	62,300	17,774 1/	9.2	3,205,000	28
	Security Cove	1,100	632	8.2	151,000	57.
	Goodnews Bay	1,100	406	9.5	97,000	36.9
	Cape Romanzof	2,700	554	9.8	132,000	20.5
	Norton Sound	7,600	2,224	8.1	500,500	29.3
	Total	74,800	21,590	8.8	4,085,500	28.9
1978	Togiak	216,800	10,115	8.6	6,700,000	4.7
	Security Cove	19,500	385	8.5	327,000	2.0
	Goodnews Bay	6,700	82	4.7	38,500	1.2
	Cape Romanzof	2,700	0	-	-	0.0
	Norton Sound	7,000	1,172	7.0	628,200	16.7
	Total	252,700	12,406	8.0	7,694,000	4.9
	Togiak	172,600	7,033	8.2	2,300,000	4.1
	Security Cove	1,200	259	-		21.6
	Goodnews Bay	400	0	-	-	0.0
	Cape Romanzof	2,700	0	-	-	0.0
	Norton Sound	4,800	13	-	-	0.3
	Totals	181,700	7,305	8.2	2,300,000	4.0

1/ Does not include an estimated 5,200 m.t. of waste.

Table 3. Conmercial harvest of Pacific herring spawn on rockweek kelp in eastern Bering Sea Fishing District, Alaska, 1978-1982.

1/ Does not include 5 m.t. dumped.
2/ Only 14 m.t. marketed, rest lost during tender accident.

Table 4. Numbers of buyers and fishermen participating in eastern Bering Sea Pacific herring fisheries, Alaska, 1978-1982.

	District	Number of Buyers	Number of Fishermen 1/		
			Gillnet	Purse	Seine
1982					
	Togiak	33	200		135
	Security Cove	3	107		*
	Goodnews Bay	3	84		*
	Cape Romanzof	2	75		*
	Norton Sound	7	237		*
1981					
	Togiak	28	106		83
	Security Cove	7	113		*
	Goodnews Bay	5	175		*
	Cape Romanzof	4	111		*
	Norton Sound	13	332		*
1980					
	Togiak	27	363		140
	Security Cove	8	175		*
	Goodnews Bay	4	165		*
	Cape Romanzof	2	69		*
	Norton Sound	8	294		*
1979					
	Togiak	33	350		175
	Security Cove	2	61		*
	Goodnews Bay	1	41		*
	Cape Romanzof Norton Sound	7 No	ishery Con 50	ucted	17
1978					
	Togiak	16	40		25
	Security Cove	3	-		-
	Norton Sound	1	11		-

** Purse seine gear prohibited.
1/ Refers to \# of vessels enumerated during aerial surveys in Togiak District.

Table 5. Subsistence herring catch (in metric tons) and effort data by selected areas, eastern Bering Sea, Alaska, 1975-1982. 1/

Village	1975	1976	1977	1978	1979	1980	1981	1982
Nelson Island								
Tununak	19.8	13.9	51.9	34.6	31.0	59.2	36.0	43.8
Umkumiut	30.0	8.5	2.8	10.4	7.5	39.1	9.0	43.8
Toksook Bay	31.0	31.8	19.3	33.5	46.5	26.6	13.0	31.6
Total	80.8	61.2	74.0	78.5	85.0	88.9	58.0	75.4
Number of Fish-								
ing Familes	109	42	90	83	54	70	93	65
Yukon-Kuskokwim Delta								
Scammon Bay	-	0.6	-	0.6	5.4	2.8	6.9	3.5
Chevak	-	0.6	0.1	-	2.1	3.2	1.7	1.8
Hooper Bay	2.5	2.7	2.1	3.5	2.8	3.3	3.6	4.2
Kwigillingok	-	9.6	0.9	-	7.2	12.0	-	12.0 2/
Total	2.5	13.5	3.1	4.1	17.5	21.3	12.2	21.5
Areas Combined								
Total Catch	83.3	74.7	77.1	82.6	102.5	110.2	70.2	96.9
Number of Fish-								
1/ Other areas with small catches have been surveyed irregularly (1975-1978 estimated total coastal yearly subsistence catch averaged $100 \mathrm{~m} . \mathrm{t}$.).								
2/ Estimate ba	ased on	st sea	on obs	rvation				

Table 6. Relative abundance index (RAI) and estimated biomass of eastern Bering herring, Alaska, 1978-1982.

District	1978	1979	1980	1981	1982
	Relative Abundance Index (RAI) 1/				
Togiak	43,050	137,630	15,249	79,352	49,998
Security Cove	246	2,912	435	2,228	4863
Goodnews Bay	241	3,729	3/	1,593	$3 /$
Nelson Island	1,079	3/	3/	1,072	$3 /$
Cape Romanzof	539	3/	3/	4/	4/
Norton Sound	1,277	1,860	2,242	6,516	4,548
Total	46,432	146,131+	17,926+	90,761+	55,032+
Estimated Biomass in m.t. 2/					
Togiak	172,600	216,800	62,300	143,900	88,800
Security Cove	1,200	19,500	1,100	7,500	4,600 3/
Goodnews Bay	400	6,700 3/	1,100 3/	3,900	2,400 3
Nelson Island	5,400	5,400 3/	5,400 3/	3,600	3,600 3/
Cape Romanzof	2,700	2,700 3/	2,700 3/	4,400 4/	4,400 4/
Norton Sound	4,800	7,000	7,600	20,800	15,800
Total	187,100	258,100	80,200	186,100	119?

1/ Number of fish schools equivalent to 50 m surface area, unadjusted for presence of non-herring pelagic species.
2/ Adjusted for presence of non-herring pelagic species. Estimates for 1978 and 1979 represent low end of estimate ranges from Barton and Steinhoff (1980), 1980 estimates from Kingsbury (1980).
3/ Incomplete data due to inclement weathern and/or turbid waters, bionuss estimates are questionable and are based on 1978, 1979 or 1981 data.
4/ No aerial surveys made, 1981 estimate based upon assumption that commercial harvest represented 15 percent of total biomass; 1981 estimate used for 1982.

Table 7. Conversion estimates (metric tons of Pacific herring per $50 \mathrm{~m}^{2}$ school surface area) obtained from test purse seine fishing, Togiak District, Alaska, 1978-1982.

Year	Water Depth (m)	Biomass per RAI unit	(m.t./50 m)
1981	2	1.1	Catch Landed
1980	3	1.2	Catch Landed
1980	5	1.1	Catch Landed
1980	5	1.2	Catch Estimated in Net
1979	6	2.4	Catch Landed
1980	6	2.0	Catch Estimated in Net
1980	6	1.6	Catch Estimated in Net
1981	6	1.7	Catch Landed
1980	8	4.0	Catch Estimated in Net
1981	8	1.9	Catch Landed
1982	8	6.7	Catch Estimated in Net
1978	$?$	11.0	Catch Estimated in Net
1978	2		Catch Estimated in Net

Figure 3. Age composition of Pacific herring in spawning populations and commercial harvests in Togiak, Security Cove and Goodnews Bay Commercial Herring Fishing Districts, Alaska 1982.

Figure 4. Age composition of Pacific herring in spawning populations and commercial harvests in Cape Romanzof and Norton Sound Commercial Herring Fishing Districts and the Nelson Island area, Alaska, 1982.

ALASKA DEPARTMENT OF FISH AND GAME division of commercial fisheries

WESTWARD REGION

1982
HERRING FOOD/EAIT FISHERY REPORT
TO THE

ALASKA BCARD OF FISHERIES

DECEMRER 1982
ANCHORAGE, ALASKA

Submitted by: Larry Malloy Regional Herring Biologist

DESCRIPTION OF AREA

The Westward Region is composed of three finfish management areas (Figure 1). Namely (1) the Kodiak Management Área which comprises all Alaskan waters from Cape Douglas west to the southern entrance of Imuya Bay and includes the Kodiak - Afognak Island archipelago, (2) the Chignik Management Area which comprises all Alaskan waters from the southern entrance of Imuya Bay west to Kupreanof Point and includes adjacent islands, and (3) the Peninsula/Aleutians Management Area which includes all Alaskan waters west of Kupreanof Point on the southside of the Alaska Peninsula and west and south of the latitude of Cape Menshikof on the northside of the Alaska Peninsula to include all Alaskan waters of the Aleutian Islands.

HISTORICAL PERSPECTIVE

Herring food and bait fisheries have occurred throughout the region in varying production levels since the first recorded harvest in 1912 up to the present time. The "hayday" of this fishery occurred in the Kodiak area during a sustained seventeen year perind, from 1934 through 1950, with an average annual harvest of 35,176 short tons (Table 1). Also within the region ancther smaller but sustained fishery occurred in the Aleutian Islands, centered near Dutch Harbor where an average annual harvest of 1,474 short tons was harvested over a ten year period from 1929 through 1938 (Table 2). In addition there were localized smaller fisheries which occurred in the Shumagin Islands and the Chignik area sporadically during the first half of this century, and more recently throughout the region as developing crab fisheries placed a premium on fresh bait.

The demise of the older larger fisheries resulted from changing market conditions and by 1959 all major food/bait operations in the region had ceased. Smaller Incalized operations continued to harvest herring for
personal bait use or commercial bait use; much of this harvest was never adequately documented but was suspected to be relatively small. I/

REGIONAI. MANAGEMENT STRATEGY

There are very few regulatory restrictions for the re-development of food/bait fisheries in this region. However, because sac roe fisheries have occurred continuously in portions of the Kodiak area since 1964 and portions of the Chignik and Alaska Peninsula areas since 1980 certain regulations do exist which protect these fisheries. Also current Board of Fisheries policies which provide for new fisheries development do so with concern for preventing double exploitation of identifiable herring stocks.

The prevailing management strategy recognizes the scope of historical, present, and future uses of this regions herring resources, defines exploited stocks abundance and distribution as well as possible, identifies industry effort and capacity and then provides for a reasonably flexible management approach which will hopefully protect the resource to sustain existing fisheries. This approach attempts to be flexible enough to meet changing industry requirements and to insure adequate biological monitoring of exploited stocks.

Kodiak Area

A published guideline harvest level of 1,000 tons exists along with a designated season extending from August 15 through February 28. Legal gear are seines, gillnets, and trawls, each with no size or aggregate limits. Thus a food/bait fishery is provided for; however, because the sac roe fishery has become so geographically extensive in this area the potential for

1/ The NPMFC Bering Sea Herring Management Plan recognizes a potential harvestable bionass of 2,000 tons for any Aleutian Islands - Alaska Peninsula devcloping food/bait fisheries.
double exploitation could be high. There exists few geographically distinct areas which once were major food/bait production areas and which currently aren't part of the area exploited during the sac roe fishery; these few areas may yet yield virgin stocks for the re-development of a food/bait fishery. Also, those areas exploited during the sac roe fishery remain open during the food/bait seasen to provide for commercial exploration and ADF\&G evaluation of any harvest which might occur.

Chignik Area

An identical management strategy exists for this area as for the Kodiak area except that seines are the only legal gear, and no guideline harvest levels exist.

Peninsula/Aleutians Area

A similar but slightly modified strategy prevails in this area. The sac roe fishery is historically minor compared to the food/bait fishery which after 40 years of relative inactivity is attempting to become re-established in the Eastern Aleutians and become both re-established and further developed in the South Peninsula area between Kupreanof Peninsula and Cape Sarichef.

No guideline harvest levels exist. In the Aleutian Islands the only closed period is from March 1 through April 15, while the remainder of the management area has a food/bait season extending from August 15 through February 28. Legal gear includes seines, gillnets and trawls, each without size or aggregate limits. The developing sac roe fishery has not proven to be as economically lucrative as the sac roe•fisheries in adjacent management areas; consequently effort, landings and harvests have declined during the last two years. During the same period food/bait interest, effort and landing have been increasing. In an attempt to provide for both fisheries to a certain degree and to acquire more knowledge of the stocks within the area, both fisheries have been allowed to occur without geographical restrictions. By closely monitoring and collecting data from each fishery as it develops, double exploitation situations may be identified and remedied.

As of November 15, 4,146 tons of herring had been landed for food and bait purposes within the Westward Region, of which 2,455 tons were for food and 1,691 tons were for bait. Eight seine vessels and approximately 52 gillnet vessels made 106 and 57 landings respectively to seven processors throughout the region. The price for food herring varied from $\$ 100$ to $\$ 300$ per ton; bait herring was valued at $\$ 240$ to $\$ 600$ per ton. The bulk of both the food and bait herring was priced at $\$ 300$ per ton; the maximum ex-vessel value of this fishery for the region was 1.24 million dollars.

Kodiak Area

This year as in recent years the Kodiak area's small bait catch came from a gillnet fishery occurring in several bays on the northend of Kodiak Island. A harvest in late summer of 12 tons from 5 landings was used for crab bait. However, this figure only represents a portion of the herring harvested for bait since there are approximately 50 small boat commercial halibut fishermen who participate in the gillnet sac roe fishery and who also gillnet their own fresh halibut bait in the spring just prior to the halibut season openings. That catch is estimated to be 4.0 tons, which when combined with that harvested for crab bait equals a total bait catch of 16 tons.

Registration prior to fishing has been required for the food/bait fishery since 1980 and there has heen an increasing interest by all gear types. Tc clate however, the actual effort and subsequent landings have been quite small.

The primary product sought has been fresh herring for local use as halibut and crab bait. No effort for food products has occurred since 1980 when a very small amount was salted and marketed unsuccessfully.

Chignik Area

No herring were landed for food and bait purposes from the Chignik area; there have been no recorded landings since Statehood. In the early and mid 1970's when there was an intensive shrimp fishery in this area occasionally incidental herring catches were made and subsequently frozen for personal crab bait, however no major bait fishery developed from these minor harvests.

Peninsula/Aleutians Area

South Peninsula Fishery:

Those South Peninsula districts extending from Kupreanof Point west to Cape Sarichef are the location of the regions newest food/bait fishery (Figure 2). The first landings were made in January and February of 1982 and since early October there have been 2 or 3 different vessels actively exploring throughout the area, so far without success. Aleutian Cold Storage at the Village of Sand Point has processed all of the herring harvested to date, however, at least five floating processors have expressed interest in processing Peninsula caught herring (Table 3).

The harvest to date has been 565 tons, all of which were taken in January and February from the Stepovak Bay section. The harvest was by one vessel making 11 landings with the aid of four different tenders over a 60 day period of exploratory fishing. This effort was hampered by unfamiliar grounds, unproven stock abundance, weather, an on-going crab fishery whose gear prevented extensive exploration, and miscellaneous crew/gear/tender and processor problems. Some of these same factors appear to be hampering the current fishing effort and add to the reduced efficiency of this commercial operation.

The ex-vessel value of this fishery was approximately $\$ 70,655$; the first wholesale value is unknown at this time. Industry indications were that a food fish market existed which could have utilized the entire 565 tons harvested. Because of occasional quality problems, i.e. fish freshness
below food quality standards, approximately 190 tons were frozen for crab bait; the remaining 375 tons were frozen and packaged as food herring. The average value of each product was $\$ 240 /$ ton for bait and approximately $\$ 160 /$ ton for food.

The gear used in this fishery has been exclusively seine vessels using large herring purse seines 1400 to 1800 meshes deep and 200 to 250 fathoms long. Fishing occurs generally at night after the herring schools have risen high enough from the ocean bottom to be reached by these deep seines. The fish are located via a searching procedure where the vessel(s) run at relatively slow speed through areas where the ocean bottom contours are suspected of being good herring habitat. During the searching procedure sonar scans the water column ahead (or around if desired) of the vessel and suspected targets are "metered" by a recording echo-sounder which prints an image of the target showing its depth within the water column and its breadth at the point the boat passes over it. From this information a general idea of the number of schools, their masses and their catchability can be determined.

Because this is a new developing fishery without harvest guidelines and because it occurs on unknown stocks of unknown abundance in an area of close proximity to where sac roe harvest have occurred, very close ADFEG monitoring has been required. Every landing in January and February was sampled and the vessel operator interviewed as to precise fishing location, estimated stock abundance, areas explored, other species observed, herring behavior patterns, etc! In addition, a biologist spent time aboard the vessel during fishing operations to monitor the quantities and frequency of herring schools observed and to somewhat verify fisherman estimates of herring abundance. The more recent exploratory fishery this fall has been monitored from the ADFEG office at Sand Point which was manned with two extra seasonal biclogists to aid in on the grounds monitoring of additional harvest activity which to date hasn't taken place.

The initial fishermen biomass estimates for the Stepovak Bay district were 2-3,000 tors. By late February an increasing number of schools in the district had increased that estimate to 5-6,000 tons. Again, no statistically
valid quantification of this biomass was possible, only the fishermens estimate, which was somewhat verified by an on-board observer. However, several unaffiliated crab fishermen who were knowledgeable about herring and who had briefly observed the herring operation indicated verbally that there were "good" quantities of herring showing on their own on-board electronics as they moved to and from the crab grounds. Consequently the season was allowed to remain open until the regulatory closure on February 28; additional considerations were that the exploitation rate was relatively slow as the on-going crab season dictated a herring processing capacity of 40 tons every 48 hours.

Aleutian Islands Fishery:

The Eastern Aleutians herring food/bait fishery is in its second consecutive year of successful re-development; the landings in 1981 were the first since 1945. A growing interest among local processors and fishermen, and a generally very favorable market response to the final food and bait products insure continued support for this fishery. The two ports of landing historically were and still are the communities of Dutch Harbor and Akutan (Figure 3).

In 1982 during the period August 5 through September 12 a total of 3,565 short tons of herring were harvested by seven limit-size seine vessels making 95 landings; nc gillnet or trawl landings were made. The average price per ton was $\$ 300$ which yielded a total ex-vessel value of 1.1 million dollars to the fishermen and tenders; estimated (unverified) first-wholesale value to the processors using an average of $\$ 800$ per ton was 2.9 million dollars.

The seine gear used was from 200-250 fathoms in length and 1600 to 2200 meshes deep. The one unit of sunken gillret gear fished was 300 fathoms in the aggregate; it only fished a short while. The three active trawlers used mic! water trawl gear and were generally targeting on cod fish with the intent of landing herring if the opportunity presented itself; toward the end of September at least one trawler reportedly made an intense but unsuccessful effort to land herring for bait purposes. During the 38 day
period that landings occurred, approximately 30 days were fishable but landings occurred on only 24 of these days. The fishing technique by seiners was identical to that described for the South Peninsula food/bait fishery.

Of the six processors purchasing herring five were shore based plants and one was a flcater which generally remained in Dutch Harbor; it did move to Makushin Bay for a short period. Two of these shore based processors also had floating processing vessels which could have been used. Five of the processors were located in Dutch Harbor and one in AKutan Eay. Of the 3,565 tons landed, unverified estimates indicate that appreximately 2,080 tons were exported to Korean and Japanese food fish markets, 1,170 tons were utilized locally for crab bait, and approximately 180 tons were lost to spoilage.

As in 1981, the majority of the 1982 catch came from Unalaska Bay (Table 4). This facilitated maintaining herring of food quality as the travel time from the major fishing locations usually didn't exceed 2 to 3 hours. This was a critical aspect of this fishery since the herring were feeding heavily and "belly burn" could rapidly occur with improper handling. These herring were not "pounded" to clean their digestive tracts as was done during the historical fishery when salting was the primary method for processing food herring. Instead the seined-up herring were pumped aboard tanked fishing vessels or tenders and transported to either Dutch Harbor or Akutan processing facilities for prompt unloading and processing. Depending on how individual catches were handled in transport, i.e. how well the fish were chilled, the maximum time available to retain quality between fish being pumped from the ocean to being frozen was 6 to 8 hours during the most critical of conditions. Early in the fishery the water temperatures were warmer, the herring heavier with feed, and the herring more available to the flect than towards the end. Consequently, during the fisheries start-up period relatively large volumes of "hot" herring could accumulate on vessels waiting to unload at processors where handling procedures for summer food herring were untried. As a result, approximately 180 tons of herring were wasted early in the season; however all of the herring landed after August 12 were processed, either for food,
as existing markets allowed, or for bait to be used in the local crab fisheries.

During the third week in August herring became less abundant in Unalaska Bay, the primary fishing location until then. The fleet explored westward and eastward resulting in additional harvests from northwestern coastal areas of Unalaska Island (Chelan Bank) and Makushin Bay. Akutan and Akun Island waters yielded nothing during this period. Unalaska Bay, although containing scattered fast moving schools of herring moving in and out of the bay, yielded only an occasional landing. Towards the end of August the herring disappeared from Makushin Bay and the inshore north coastal area. Concentrations of deep occurring herring seemed to become more abundant offshore on the outer Chelan Bank. At the same time occasional landings were still being made from Unalaska Bay. By the first week in September only one seine boat remained fishing. The lack of readily available herring and the increasing bad weather combined with the desire to finish up a long season which had begun on sac roe herring in April essentially finished the fishery. Since several of the processors were still buying herring, the one boat remaining continued to fish sporadically until the middle of September when reportedly the herring seemed to leave the area.

ADFEG ACTIXITY

ADFEG closely monitored this fishery with the resources available to it. Data collection was accomplished by ADF\&G personnel working out of Dutch Harbor, Akutan Bay, and on the fishing grounds. Qualitative biological information was obtained through fishermen/processor interviews, on-the-grounds observations of fish finding and harvesting activities, and from observing processing activities. Quantitative biological data was obtained through daily commercial catch sampling. As a result, approximately 2,100 fish were collected in 42 samples of 50 fish each, over a 38 day period.

Data consisted of sex ratios; scales for aging, growth, and possible stock separation analysis; standard lengths and total body weights for growth and condition information; and gonad weight and condition.

The sex ratio data showed a slightly higher ratio of males to females, 51 and 49 percent respectively. The age composition data (Table 5) indicated that older fish were more abundant earlier in the season, that younger fish dominated the catches from approximately mid-August until the last landing occurred in mid-September, that herring associated with each of four geographical catch areas did not show significantly different age composition after the initial shift from older to younger fish occurred, and that the dominate age classes were 8 and 5 year old fish. Standard length-at-age comparisons (Table 6) indicated that the stocks were of the larger Bering Sea race of herring whose spawning range extends westward at least to Unalaska Island as evidenced by samples collected in known spawning areas in mid-April of 1972, and eastward in South Peninsula waters to Pavlof Bay. The total body weights averaged a heavy 320 grams per fish, partially as a result of being gorged with feed. Gonad development was surprisingly advanced, especially for the older age fish, particularly the males. Obviously a large part of the food value from their heavy feeding activity was being used in gonad development.

No biomass estimates within the catch area were made. From fishermen interviews, CPUE indicators, and on-the-grounds observations there appeared to be good quantities of herring available. The consensus was that because of herring feeding behavior patterns there was a continual migration within and possibly between geographical catch areas. It was felt that obtaining a realistic estimate of available biomass would require more knowledge of stock(s) distribution patterns. Consequently, because of the relatively small fleet and processing capacity a rather liberal management approach was taken and further justified by knowing that commercial effort would provide data required for determining stock(s) condition and possibly identification and abundance.

There was a prevailing concern that this fishery wasn't occurring on entirely virgin stocks, i.e. the stocks may have been at least in part
previously exploited in the coastal sac roe fisheries of western Alaska or the South Peninsula. The age composition and growth data was similar for these areas (Tables 5 and 6). However, information does exist indicating the presence of local spawning stocks, and these would be virgin stocks. Therefore the stocks being fished were, at best, a mixture of exploited and virgin stocks. Since commercial interest was very high and the fishery expected to grow annually at increasing levels of efficiency, the 1982 fishery was encouraged to continue beyond historic catch levels and locations as an exploratory data collection venture.

1983 MANAGEMENT PLA.N

The 1983 management plan will be formulated around the Board of Fisheries final policy on herring resource management and on the newly established regulations resulting from the 1982/83 Board meeting. Special consideration will be given to newly established guideline harvest levels and designated exclusive fisheries (food/bait versus sac roe), and how they relate to pre-season age composition expectations, anticipated recruitment strength and biomass estimates. Consequently the management strategy should be less liberal than it has been during the developing phase of the food/bait fishery, and consequently more biologically sound.

ALASKA HERRING STATISTICAL AREAS

0＊9I	2861		$\begin{aligned} & \text { I96I } \\ & 096 \mathrm{I} \\ & \text { 6S6I } \\ & \text { 8S6I } \\ & \angle S 6 I \end{aligned}$		$\begin{aligned} & 9 \varepsilon 6 I \\ & \varsigma \varepsilon 6 I \\ & \dagger \varepsilon 6 I \\ & \varepsilon \varepsilon 6 I \\ & \tau \varepsilon 6 I \end{aligned}$
0.81	I86I		956I	0．000＇I	IE6I
L．08E	0861	＾${ }^{\text {a }}$	SS6I	0・てZ9	0ع6I
8－ヵで	6L6I	7sonien on	7S6I	ezed on	626I
6＊86を	8L6I	0．SZL	とS6I	$0 \cdot 529$	8261
วววโdwosul ezed	LL6I	$0 \cdot 68 \varepsilon^{\prime} \mathrm{I}$	てS6I	$6^{\circ} 265^{\prime}$ \％	LZ6I
	9L6I	$0 \cdot 66$ \％＇ヶ $^{\text {¢ }}$	I56I	6．089｀乙	976I
\％${ }^{\text {c }}$	SL6I	S＊てとI＇カワ	056I	0． 266 ＇6	S26I
－0ヶ	7L6I	7santeh on	676I		7261
0．8LI	\＆L6I	0•8で「97	$8 \ddagger 61$	¢•IZを	\＆Z6I
$8 \cdot 67$	ZL6I	$0 \cdot \varepsilon ヶ L^{\prime} 0 S$	Ly6I	9＊28ヶ「	226I
でカワ	IL6I		976I	6・ワワ6	126I
$5 \cdot L$	0L6I	0＊カII「1を	S 56.1	$6^{\circ} \mathrm{S}$ ¢	0261
эววโduovur e7ed	6961	0＊ 5 ¢8＇9 9	カワ6I	L．6sz	6I6I
$\dagger \cdot \varsigma I$	896I	0＊ 2 SE＇$\frac{\text { E }}{}$	عゅ6I	ワ＊8II	8161
$\varepsilon \cdot 00 \varepsilon$	L96I	0＊16L＇91	てヵ6I	$6^{\circ} \mathrm{LEI}$	LI6I
0．86I	9961	$5 \cdot \varepsilon 80{ }^{\circ} 0{ }^{\text {¢ }}$	Iヵ6I	$0 \cdot 01$	9161
$0 \cdot \varsigma \varepsilon$	¢96I	0＊$\angle 19^{\prime}$ てZ	0ヶ6I	＂${ }^{\text {a }}$	SI6I
$8 \cdot 60$ ¢	カ96I	$5 \cdot 009^{\text {¢ }} 8 \mathrm{E}$	6E6I	＂${ }^{\text {a }}$	サI6I
＂${ }^{\text {a }}$	ع96I	0・てZS＇って	8ع6I	7sanieh on	\＆16I
	2961	£． 659^{\prime} LZ	LE6I	$0 \cdot 02$	2I6I
$\begin{gathered} \overline{\text { LSAIYYH }} \\ \text { SNOL } \end{gathered}$	$\overline{\mathrm{y} V E X}$	$\begin{gathered} \overline{\mathrm{IS} \Omega \Lambda Y \forall \mathrm{~B}} \\ \text { SNOL } \end{gathered}$	．$\overline{\mathrm{y}}$（ ${ }^{\text {a }}$	$\begin{gathered} \overline{\mathrm{ISGA} \triangle \mathrm{ZVH}} \\ \text { SNOI } \end{gathered}$	$\overline{\text { YVAX }}$

KODIAK AREA HERRING FOOD／BAIT HARVEST

Year	Harvest (Short Tons)	$\begin{gathered} \text { No. } \\ \text { Processors } \end{gathered}$	No. Boats	No. Lndgs.	$\overline{\mathrm{x}}$ Tons Per Boat	$\overline{\mathrm{x}}$ Tons Per Lndg.	$\begin{aligned} & \overline{\mathrm{x}} \$ \\ & \text { Per Ton } \end{aligned}$	$\begin{gathered} \text { Ex-Vessel } \\ \text { \$ Value } \\ \text { (Millions) } \end{gathered}$
1929	1,259	No Data						
1930	1,916	"	"	"	"	"	"	"
1931 1/	1,056	12	26	"	"	"	"	"
1932 1/	2,510	12	30	"	"	"	"	"
1933 1/	1,585	12	38	"	"	"	"	"
1934	1,533	9	No Data	"	"	"	"	"
1935	2,412	10	"	"	"	"	"	"
1936	1,379	8	"	"	"	"	"	"
1937	579	No Data	"	"	"	"	"	"
1938	513	"	"	"	"	"	"	"
1939-44	No Fishery					.		
1945	75	No Data	"	"	"	"	"	"
1946-80	No Fishery							
1981 2/	704	2	2	16	352.0	44.0	300.00	. 211
1982 2/	3,565	6	7	95	509.3	37.5	300.00	1.100

1/ All gear for 1931-1933 was gillnet gear except for 1931 when 1 seiners participated. Gillnet gear equals the number of gillnets fished; the records don't show how many gillnets were fished per individual, only the number owned per processor. The average length per gillnet for each year listed was: 1931-?, 1932-51.7 fathoms/net, 1933-46.7 fathoms/net.

2/ All gear for 1981 and 1982 was purse seine gear. Gillnet and trawl. gear expressed interest and participated to a minimal degree without recording any commercial landings.

TABLE 3

WESTWARD REGION HERRING FOOD/BAIT FISHERY PENINSULA/ALEUTIANS INDUSTRY EFFORT - 1982

TABLE 4
WESTWARD REGION HERRING FOCD/BAIT FISHERY
ALEUTIAN ISLANDS HARVEST SUMMARY BY GEOGRAPHICAL AREA

Geographical Catch Area	Harvest in Short Tons 19811982		No. Landings 19811982		AverageTons/Lndg.$1981 \quad 1982$	
Akun/Akutan Islands	195	158	4	4	48.8	39.5
Unalaska Bay	509	1614	12	39	42.4	41.4
Chelan Bank	-	881	-	24	-	36.7
Makushin Bay	-	912	-	28	-	32.6
Total	704	3565	16	95	44.0	37.5

ALEUTIAN ISLANDS HERRING FOOD/BAIT FISHERY - 1982
AGE COMPOSITIONS OF GEOGRAPHIC CATCH AREAS

ALEUTIAN ISLANDS HERRING FOOD/BAIT FISHERY - 1982

LENGTH AT AGE COMPARISONS WITH DATA FROM WESTWARD REGION SAC ROE FISHERIES

 AVERAGE HYPURAL LENGTH (mm) BY AREA

FISHERLES KESEAKCH INSTITUTE

School of Fisheries University of Washington Seattle, Washington 98195

SCRLE PAITEKK ANAIYSIS TO ESTIMATE THE ORIGIN OF HERRING IN THE DUTCH HARBOR FISEERY
by
R. V. Walker and K. N. Schnepf

Preliminery Report
to
Alasica Department of Fish and Game

Vecember 1. 1982

ABSTRACT

Scale patterns and back calculaced lengtha were used to classify age 5 herring caught in the Dutch Harbor food and bait fishery to stock of origin. Five standards were used: Norton Sonnd, Cape Romanzof, Nelsun Island, Togiak, and Pott Moller. Norton Sound and Cape Romanzof Eish were not detected in the Dutch Harbor sampleg. Overall elasstfiratnry arcuracy was 73.4% fot a three way analpate uains Nelson Island, Tugiak, and Pore Moller stocks. Point estimates for the origin of all Dutch Harbor age 5 herring scales were 43.3\% Togiak, 35.4% Nelsm Isiand, and 21.3\% Port Moller, with broadly overlapping 90% confidence intervals.

SCALE PATTERN ANALYSIS TO ESTIMATE THE ORIGIN OF HERRING IN THE DUTCH HARBOR FISHERY

This is a preliminary report on the use of scale pattern analysis to detemine the stocks of origin of Pacific herring (clupea harengus pallasi) caught in a food and bait fishery operating from Dutch Harbor (Unalaska Island), Alaska.

METHODS

Construction of Standards

Our analysis was limited to age 5 herring, the dominant age class in the 1982 roe and food and bait fisheries. Scales from eight spawning stocks were measured; Norton Sound, Cape Romanzof, Nelson Island, Goodnews Bay, Security Cuve, Tusiak, Fubi iivilel, and Canoe Bay. The standard from Norton Sound was constructed of samples from three subdistricts (Klikitarik, Unalakleet, and Cape Denbigh) weighted according to biomass estimates provided by ADF\&G biologists. A standard from the Togiak vicinity was constructed using samples from Goodnews Bay, Security Cove, and four Togiak subdistricts (Hagemeister, Kulukak, Togiak, and Nunavachak) weighted according to biomass estimateg.

Desired standard samples ($n=200$) were available from all stocks except Nelzon Island ($n=186$) and Canoe Bay ($n=28$). As there were so few age 5 scales from Canoe Bay, that stock was not included in the analysis. In additinn; the age pfrurt!!re nf the Canoe Bay atock was very different from that of the eastern Bering Sea stocks and from that of the Dutch Harbor catches. The dominant ago alpecoe at Canoo gay woro ages 6, 4 and 9, while the other groups were predominantiy ages 5, 4, and 8.

After the initial five-class analyais, a composite standard of Morton Sound and Cape Romanz of scales was constructed, with the two stocks weighted by blomass estimates. This standard urs used in the four-class analysis.

Sample Composition of Herring Unknowns

The Dutch Harbor food and bait fishery operated in four locations in the eastern Aleutian Islands: 1) in linalagha gay, 2) sachelan Bank, and 3) in Makushin Bay (all three Locations near Unalaska Island), and 4) nẹar Akun and Akuean Islands. Scale aamplas were collected by ADF\&G biologists from all of these areas throughout the fishing period. All age 5 scales collected from the fishery were aeasured and classified ($n=584$).

The unknown scales were alao stratified by fishing date. Unalaska Bay scales were separated into two periods (8/10-16 and 8/22-27), as wete Chelan Bank scales (8/18-19 and 8/24-27). A late sample from Unalaska Bay (9/9) was Classified separately. Fish from the first two
days of fishing ($8 / 5$ and $8 / 9$) appeared to have an age structure composed largely of older fish, but there were ingufficient age 5 scales to classify these separately ($n=10$). However, these scales were included in the overall analysis. Combinations of area and time period were also analyzed.

Character Selection

In the initial five-class analysis, six characters were used: five harkralrintatod longthe (at agoo 1 through 5) and one proportion (pro portion of scale growth in first year, 1.e., distance from focus to first annulus divided by total scale size). Backealculated lengths were computed by a straight linear formula with no correction:

Length at age $1=\frac{\text { distance to annulus } 1}{\text { total scale size }} x$ length at capture. Clasmiftratinn mernrary in the fivemclass analysis was poor. One cause of chis was concencracion on backcalculated length characters. length-at-age characters are all higinly dependent on length at capture. While length at capture is a good discriminator between most of the stocks, the use of several dependent characters adds little ariditinnal mwar in the analysis. In addition, fish will classify to stocks largely on the basis of lenpeh (shorter fish to shorter stocks) and stocks havine similar mean lengths wil misclassify to each other (Norton Sound and Cape Romanzof; Togiak and Pore Moller).

For the three- and four-way analyses, it was decided to examine characters dependent only on acale measurementa; in adidition to backcalralaren lengthe: Thirty characters were tested, of five basic types: 1) scale distances between annuli, 2) cumulative acale size at age, 3) proportion of scale growth in each year, 4) backcalculated lengethe, and 3) combinacions and ratios of distances between annuli. Four characters were selected, one from each of the first four categories: 1) scale distance between the second and third annuli (scale growth in the third year); 2) total size of scale at age 5; 3) proportion of scale growth in the secumi year; aud 4) bacikcalculated length at age 5. Other characters were efther dependent on those selected or were poor discriminators.

Classification and Point and Variance Estimation Proredures

Patterns of selected scale characters in the standards were used to classify scales of individual fish in the Dutch Harbor fishery samples to their probahie stock of arigin. Alchough the five-class analysis lacked sufficiont acauracy te givo aocaptablo point oatimateo, e trial run on the unknown samplea indicated the Norton Sound and Cape Romanzof stocks were not present in the Dutch Harbor fishery area. The Norton Sound/Gape Romanzof eombined otock was hut delected lal lite ruar-class analysis (L.e., no positive point estimates were obtained). A final three-class analysis using the Nelson Island, Togiak, and port Moller stocks was used in the classification of unknown samples presented in
this report. Point estimates and 90\% confidence intervals were obtained
 of moto fich woro availalic.

The term 'positive estimate' refers to any pont estimate greater than zero obtained for a stock in the classification of unknowns frem one of the combinations described above. The term (statistically) 'significant estimate' refers to a point estimate whose 90% confidence interval does not include zero.

RESULTS

Classification of Standards

The results of classifying the various combinations of stock standards are shown in Toble ! Overall elaecifiantory accuracy of the 5-class analysis was only 44.0%. The peremiages oi fisin correctly classified as Norton Sound, Cape Romanzof, Nelson Island, Togiak, and Port Moller, were $50.5 \%, 45.0 \%, 30.1 \%, 47.5 \%$ and 51.0%, respectively. Nelson Island misclassified heavily with all stocks. Norton Sound and Cape Romanzof crose-clasgified with each other, as did Togiak and Port Moller.

In the 4-class analysis, overall accuracy fumped to 63.6\%, with correct classification percentages of $62.5 \%, 49.5 \%, 73.0 \%$, and 69.5% for Norton, Romanzof, Nelson Island, Togiak, and Port Moller, respectively. Nelson Island again had the lowest accuracy, and misclassified with all stocks.

The 3-class analysis yielded an accuracy of 73.4% overall, with accuracies of $65.6 \%, 76.0 \%$, and 78.5% for Nelson Island, Togiak, and Port Moller. Highest misclassifications were with Nelson Island.

Classifications of Unknowns
Mixing proportion eatimates and 90% confidence intervals were calculated for various combinations of fishing location and time periods (Table 2). Estimates for Norton Sound and Cape Lomanrof atocte are not included, as no postive estimates were obtained for these stocks for any combination of location and period.

Positive estimates were obtained for the remaining three stocks (Nelson Island, Togiak, and Port Moller) for all combinations of locetion and period, except for Port Moller in Unalaska Bay on 9/9. These estimates were all statistically significant with the exception of one for Toeiak (Akin/Akutan), two fox Port Mollcy (Akwa/skutan; Chelan Dank during 8/18-19), and three firi Nehoun isiand (Üasiaska Bay during 8/22-27 and on 9/9; Chelan Bank during 8/24-27).

Although each stock exhibited a range of estimates, estimates for Togiak were generally above 40\%, those for Nelson Island above 30\%, and
those for Port Moller above 20\%. This trend is reflected in the overall estimate for all unknom sralen nf 43. $3 \underline{y}$ from Togiak, 35.4\% from Nelson Island, and 21.3% from Port Moller.

DISCUSSION
 and Port Moller showed a rough equivalence. Although confidence intervals were wide and broadly overlapping, the Togiak stock seems to rank highest in abundance, followed by Nelson Island and Port Moller. The lack of any positive estimates for Norton Sound and Cape Romanzof stocks indlcate that these stocks are not present in detectable numbers in the Dutch Harbor fishery.

Estimates for Nelson Island seemed to decrease over time, while those for Togiak increased: This may indicate migrational movement through the area and a changing stock composition for the fishery. The estimates for Port Moller are relatively atable over time, showing no clear trend.

The classification accuracies of the standards and the mixing proportion estimates and confidence intervals of the unknowns are well within the range of estimations previously obtained in work on sockeye and coho salmon. If the stocks used for standards are the only atocks
 orisino of the cateh. Howerex, if there are olutho faun che Alwoke Peat insula or the Aleutian Islands which contribute heavily to the fishery but have not been incliuad in ehe atanadazā, seales from those fish will be misclassified to one of the gtandards used.

There are several recommendations for future scale pattern work on eastern Bering Sea herring:

1) surveying, samnling and getimgtion of stock size of all apawning stocks on the Alaska Peninsula and in the eastern Aleutians, and collection of scales from all major apawning stocks;
2) additional scale collection from Nelson Island and Port Moller, to etisuifi ducyuais sautple sizes and accomodation of analysis of other age classes; and
3) ensuring consigtenc gcale collection techniques among all field crews.

Table 1. Decisior arrays for 1982 age herring of the Eastern Bering Sea for a) 5-class, b) 4-class, c) 3-class situations. The overall classificatory . 1 ccuracies were calculated as the unweighted means of accuracies on the diagonals α the decision arrcys.
a) 5-class:

Norton Sound we. Cape Ronanzof vs. Nelson Jsland vs. Togiak vs. Overall Port Moller accuracy: 44.8\%

Calsulated decision	Correct decision (\bar{X})				
	Norton	Romanzof	He Lson	Togiak	Mol: er
Norton	1!) 1 (50.5)	48 (24.0)	41 (22.0)	$2(1 . C)$	8 : 4.0)
Romanzof	:33 (26.5)	90 (45.0)	il (16.7)	5 (2.5)	16 (8.0)
Nelbon	30 (15.C)	42 (21.0)	56 (30.1)	40 (20.6)	27 :13.5)
Togiak	$8(4 . C)$	11 (5.5)	37 (19.9)	95 (47.5)	47 (23.5)
Moller	8 ($4 . C$)	9 (4.5)	21 (11.3)	58 (29.C)	102 (51.0)
Total	200	200	185	200	200

b) 4-class: Norton Sound/Cape	Nelso	vs. Togiak vs. Port Moller		Overall accuracy: 63.6\%
Calcuíated decision	Correct decision (\%)			
	Nreton	Nelson	Togiak	Mol: er
Norton	125 (62.5)	40 (21.5)	0 (0.0)	31 (15.5)
Nelson	\$9 (24.5)	92 (49.5)	33 (16.5)	20 (10.0)
Togiak	$9(4.5)$	33 (17.7)	146 (73.0)	10 (5.0)
Holler	17 (8.5)	21 (11.3)	21 (10.5)	$139(69.5)$
Total	210	186	200	200

c) 3-class: Overe11

Nelson Island ys Togiak ve. Port Moller accuracy: 73.4\%

Calculated decision	Correct decision (\%)		
	Nelson	Togiak	Moller
Nelaon	122 (65.6)	36 (18.0)	32 (16.0)
Togiak	35 (18.8)	152 (76.0)	11 (5.5)
Moller	29 (15.6)	12 (6.0)	157 (78.5)
Total	186	200	200

Table 2. Estimates of the mixing proporiluus of age 5 eastern Dering Sea herring in the Dutch Harbor food and bait fishery in 1982.

Mixing proportion estimates (\%) within 90% confidence intervals

> Summary of Public Hearing on Herring FMP in Bethel, Alaska

November 10, 1982

The North Pacific Fishery Management Council held a public hearing on revisions to the Herring FMP in Bethel, Alaska on November 10, 1982. The Council was represented by Rudy Petersen, Leroy Sowl and Clarence Pautzke. The following people attended:

Moses Ayagalria	Napakiak, AK 99634
Paul Kiunya	Kipnuk, AK 99614
John I. Nicori, Sr.	Kwethluk, AK 99621
Raymond C. Christiansen	Bethel Calista Corp.
Axel C. Johnson	Emmonak, AK 99581
	Task Force Member
Harry Wilde, Sr.	Mt. Village, AK 99632
Issac Hawk	Eek, AK 99578
Ralph Horn	Bethel, AK 99559
Frank Demantle, Sr.	Kuskokwim United Fishermen Assn.
Ron Southern	Bethel, AK 99559
Mark John	United Village of Nelson Island
Paul John	United Village of Nelson Island
Jack Williams	Mekoryuk, AK 99630
Norman Cohen	Nunam Kitlutsisti
Stella Davey	Alaska Native Foundation
	Fisheries Program
Nels Alexie	Kuskokwim Community College
	P.O. Box 3K8
	Bethel, AK 99559
George Hert	YKHC, Bethel, AK 99559
Mike Williams	AVCP Fisheries Task Force
DeeDee Jonrowe	ADF\&G, Bethel, AK 99559
Tony Vaska	State Representative
John R. Stone	Chevak, AK 99563
John Paul Jones	Nunam Kitlutsisti
Jesse Foster	Quinhagak, AK 99655

The following comments were received at the hearing:
Paul Kiunya, Sr.: Herring populations are low at Kipnuk and he strongly opposes an offshore fishery which might recreate problems associated with the Japanese fishery of the past. He is a subsistence user and does not want the stocks intercepted offshore. Commercial uses of herring are becoming important too.

Ralph Horn: Everybody opposes offshore fishing on mixed stocks.
Harry Wilde, Sr.: Against offshore fishery because it would intercept herring used locally. Chevak, Hooper Bay, and Seammon Bay derive cash income from the commercial herring fishery. These inshore fisheries must not be hurt.

Axel Johnson: Subsistence is a way of life for natives. Subsistence is their main source of food and must be protected.

Jesse Foster: Biological information is lacking on the impacts of an offshore fishery and management is more political than biological. Must keep harvest inshore. Does not support a high seas fishery. Made point that all age classes are used in the estimation of biomass but 1-3 year olds are too small to catch in gillnets. This could result in perceived underharvest.

John Stone: He asked how an offshore fishery would benefit the inshore fishery. He was concerned about the Board of Fisheries guidelines at Cape Romanzof.

Paul John: Subsistence is 'important to native village uses. Fish stocks were low at one point and only small herring came back. Nelson Island people use herring as food and are not in favor of offshore interceptions. Herring resource is as important to Nelson Islanders as having a steady job.

John Paul Jones: FMP revision was not delivered in time for adequate review. Natives need cash base to buy equipment, fuel and clothing and are just getting into the commercial herring fishery. He fears that an offshore allocation will hurt this developing source of much needed cash.

Ray Christiansen: He questioned the conditions under which the Regional Director and ADF\&G could open an offshore fishery north of $55^{\circ} 47^{\prime} \mathrm{N}$ before July 1 in Section 2.5.2.

Norman Cohen: The local concern is to protect the northern stocks. FMP revision moves in the right direction but does not go far enough. There is no recognition that fish not caught one year will come back to spawn another year and therefore are not surplus. He is still strongly opposed to any offshore fishery as long as it is necessary to limit the inshore fishery.

The Association of Village Council Presidents passed a resolution calling on the North Pacific Council to reject those portions of the FMP which authorize a high seas trawl fishery for herring (see attachment).

ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS
 FISHERIES TASK FORCE

REQUESTING THE NORTH PACIFIC FISHERY MANAGEMENT COUNCIL NOT TO ACCEPT PORTIONS OF THE BERING/CHUKCHI SEA HERRING PLAN WHICH PROVIDES FOR AN OFFSHORE, HIGH SEAS TRAWL HERRING FISHERY

WHEREAS, the Association of Village Council Presidents Fisheries Task Force is made up of representatives of the fishing industry from throughout the Yukon-Kuskokwim Delta; and

WHEREAS, the North Pacific Fisheries Management Council is presently considering a Bering/Chukchi Sea Herring Management Plan which includes

- provisions for an offshore, high seas, trawl herring fishery on mixed stocks of herring which winter in the eastern Bering Sea; and

WHEREAS, there are coastal villages of the Yukon-Kuskokwim Delta which rely upon the herring stocks of the eastern Bering Sea for their nutritional needs, especially in the villages of Nelson Island and vicinity; and

WHEREAS, the herring resource is becoming an important source of income for some coastal villages because of the new commercial herring fisheries in the Cape Romanzof and Cape Newenham areas; and

WHEREAS, when high seas herring fishing was conducted in the early 1970's, primarily by the Japanese and Russian fishing vessels, there was an extreme reduction in the amount of herring which spawned along the Yukon-Kuskokwim delta; and

WHEREAS, this reduction caused a hardship on those villages which rely upon the herring for food; and

WHEREAS, fishing on mixed stocks of herring can be very dangerous to the continued health of the resource, especially to the smaller herring stocks which spawn north of Cape Newenham, but which commingle with the larger Bristol Bay stock on the high seas during the winter months; and

WHEREAS, herring which are not harvested in the inshore subsistence and commercial fisheries will return again to the spawning grounds in later years and will again be available for harvest there.

 とeこe ct tease \#crticns of the Eexin: Chukchi Sea Herring Management Plan which authorize a high seas, trawl herring fishery.

Dated: November 11, 1982

[^2]
Marine Resources Company

HEAD OFFICE:
192 Nickerson Suite 307
Seattle, Washington 98109
Phone: (206) 285-6424
Telex: 277115 MRC UR

NAKHODKA OFFICE:
Verkhne - Morskaya, 134
Nakhodka 17
Primorski Krai
692900 U.S.S.R
Telex: 213118 MRK SU

December 2, 1982

Jim Branson, Executive Director North Pacific Fisheries Management Council
Post Office Box 3136 DT
Anchorage, Alaska 99510

Dear Jim,
Enclosed is our proposed adjustment to the latest revisions being considered for the Bering Sea/Aleutian-Island-FMP. We understand the Coucil in meetings together with the Board of Fisheries have on their agenda a discussion of these recent revisions and we would like our proposed adjustment to be included. You will find it similar yet not identical to a proposal we made at the July council meeting. I will personally be giving public testimony on the current revision package being considered and this proposal will comprise a portion of my presentation. Additional written testimony will be presented at the time of public testimony but we wanted this portion to be available for any distribution you felt advisable.

MS/kr
Enclosure

Marine Resources Company

HEAD OFFICE:
192 Nickerson
Suite 307
Seattle, Washington 98109
Phone: (206) 285-6424
Telex: 277115 MRC UR

NAKHODKA OFFICE:
Verkhne - Morskaya, 134
Nakhodka 17
Primorski Krai
692900 U.S.S.R
Telex: 213118 MRK SU

PROPOSED ADJUSTMENT OF BERING/CHUKCHI SEA FMP

PURPOSE: To resolve the present conflicts about procedures for allowing or not allowing an offshore domestic fishery for herring. "This Proposal is a compromise approach intended to balance the interests and concerns of the parties on both sides of this question. This amendment if accepted may also substantially reduce the likelihood that the plan will be contested in court of law by one or both of the parties.

TEXT: In the first three years following the implementation of this FMP an offshore domestic fishery at the minimum level of 10,000 tons will be authorized on an experimental basis. The fishery will be authorized for the period October through April and shall be conducted north of $56^{\circ} 00^{\prime} \mathrm{N}$ Latitude in the Bering sea. If on a year by year basis the inshore fishery significantly underharvests the resource then the Secretary/Council/Regional Director may increase the allocation to the domestic offshore fishery up to a maximum limit of 50% of the relevant final OY. At the end of this three period the impact and benefits of this experimental offshore fishery will be evaluated to determine the future of such an allocation approach.
RATIONALIZATION:

1) Proposal suggest a rather moderate level for the offshore fishery. Some minimum quantity must be assured to give the catching and processing industry an opportunity to gain experience with the species as afood fish: where and how to catch it, what the concentrations are like, how to handle and process it together with the very important task of exploring and developing diverse markets. With the many conservative factors already incorporated into the plan for determining biomass estimates, setting exploitation rates and other management measures this level of allocation seems quite defensible from a biological point of view.

RATIONALIZATION:
2) The allocation is not permanent. After three years it may be eliminated or modified if necessary.
3) If evidence exists or can be generated thru monitoring of the limited offshore fishery, while it is in process, that there exists discrete spawning stocks mixing in offshore areas which are significantly and adversely impacted by the offshore fishery then the Council/Regional Director/ Secretary may have in season control and make changes.
4) The domestic trawler fleet is in dire need of any and all kinds of markets, particularly as a result of the very poor prospects over the next few years for sustaining income from the crab fisheries.
5) The council has established a precedent for allowing a "domestic fishery on an experimental basis" in an area of domestic concern over species composition. The Bering Sea/Aleutian Island FMP provides for domestic trawling "on an experimental basis" within the pot sanctuary.
6) Given the lack of significant risk in conducting an offshore fishery at moderate levels the ultimate justification for this experimental fishery is the opportunity to generate useful data. Nobody can argue that many of the most difficult problems associated with finalizing this plan result from lack of data. An offshore fishery offers the very best opportunity to generate some of this needed data. Fishery managers must of course base their decisions on the best data available. Responsible management however should seek out and encourage the generation of this data so that the largest possible base of objective information is available for consideration.

2 December 1982

Information on Bering Sea herring from

1982 Northwest and Alaska Fishery
Center Resource Survey Cruises
September-October, 1982
by
Vidar G. Wespestad and Jeffery June Northwest and Alaska Fisheries Center National Marine Fisheries Service

The Northwest and Alaska Fisheries Center (NWAFC) has tested the feasibility of assessing herring in the eastern Bering Sea. Past attempts have focused on hydroacoustic surveys over the winter grounds northwest of the Pribil.of J.slands. However,past surveys have been unser issful due to the difficulty of operating in the Bering Sea dutring winter months in the vast area to be covered with limited vessel time. The NWAFC conducts annual crab and groundfish assessments in the eastern Bering Sea during the summer months but few herring are taken in these surveys. I.t is believed that herring are in coastal waters during the time of the surveys.

In autumn 1982 two special study cruises were conducted along the outer continental shelf in which larger than usual quantities of herring were caught. This paper reports the herring data obtained in these cruises.

The first cruise examined differences in species composition on either side of a temperature front occurring on the outer continental shelf. Larger catches of herring were made on the warm side of the front(table 1). The average CPUE for herring on the warm side of the front was $38.66 \mathrm{~kg} / \mathrm{ha}$ or $65.72 \mathrm{~kg} / \mathrm{km}$. The survey was concentrated in too small an area to derive a biomass estimate from these catches. All trawling was done with a two seam otter trawl 17 m wide by 2.5 m high during dayl.ight hours. Herring appeared to have been on bottom as little sign was observed in the water column and herring in the catch were well mixed throughout the codend.

The second cruise was designed to investigated marine mammal food habits relative to available fish species. Marine mammal observations and sampling occurred during the day and trawling was conducted at night. Trawling was accomplished using a eastern bottom trawl similar to the one fished on the on the first cruise. A total of 50 hauls of 30 min duration were made along the outer continental shelf between Unimak Pass and the Pribilof J.slands (figure 1).

Herring occurred in 34 of the 50 hauls completed during the second cruise. In many hauls herring was a significant portion of the haul with catches over 200 lbs in several hauls. The average CPUE of herring in all hauls was $4.3 \mathrm{~kg} / \mathrm{km}$. This CPUE value is appropriate if all the herring in the trawl were taken while the trawl was on bottom. However, onboard observations indicated that most herring were at the head of the codend indicating that they were caught towards the end of the haul either on bottom or in the water column during the haul-back. Indications are that the herring were caught in the water column during haul-back. All hauls were made at night during which herring are dispersed in the upper water column actively feeding. These factors suggest that herring were caught while the net was off-bottom therefore effort was adjusted to 10% of total fishing time, the estimated effective portion of total effort. The adjusted CPUE estimate was $43.1 \mathrm{~kg} / \mathrm{km}$. Appling le adjusted average CPUE over the survey area ($66,756 \mathrm{sq} . \mathrm{km}$) "ptoduced an estimated mean biomass of 168,698t.(s.d. $=71,367 \mathrm{t}$.). The distribution of catches is shown in figure 2.

The herring taken in the survey were generally large (figure 3). The mean length was 28.6 cm (fork length) with a mode at 2829 cm . Adjusting fork leng th to standard length $28-29 \mathrm{~cm}$ herring will be age 7-8 next spring assuming growth was nearly complete at the time of the survey.

Table 1. Comparison of herring catch rates on either side of the eastern Bering Sea shelf "cold front" recorded on the R/V Chapman in September, 1982

Warm side						Cold side					
haul. no.			mean wt.	temp C.	CPUE $\mathrm{kg} / \mathrm{ha}$		$\begin{gathered} \text { sam } \\ \text { wt. } \end{gathered}$		mean wt.	temp C.	CPUE kg/ha
2	35.0	191	0.183	1.6	8.05	1	0.0			2.9	
3	1.1	6	0.189	4.7	0.53	12	14.1	60	0.234	3.0	6.16
4	25.4	116	0.219	4.7	11.93	13	1.8	12	0.151	3.0	0.83
16	2.4	7	0.343	4.8	1.03	14	5.0	33	0.151	3.1	2.22
17	0.9	3	0.302	4.7	0.40	15	1.8	12	0.151	3.1	0.78
18	0.0			4.8		22	9.1	65	0.139	2.8	4.14
19	31.9	105	0.304	4.8	14.17	23	8.6	64	0.134	2.7	3.58
20	6.3	17	0.368	4.8	2.77	24	22.0	147	0.149	2.8	9.63
21	245.8	961	0.255	4.9	112.17	25	35.6	231	0.264	3.0	14.79
29	117.8	949	0.187	4.8	78.92	26	15.9	107	0.148	2.8	6.89
30	508.5	2121	0.239	4.7	213.98	27	5.9	38	0.155	2.8	2.58
31	46.3	221	0.209	4.6	19.99	28	5.7	41	0.139	2.8	2.41
mean	$\mathrm{kg} / \mathrm{ha}$				38.66						4.50
sd.	dev.				65.70						4.29
mean	$\mathrm{kg} / \mathrm{km}$				65.72						7.63

$$
+34
$$

Figure 1, --Location of trawl stations fished by R/V MILLER FREEMAN during September-October 1982.

Figure 2.--Survey catch per unit effort (CPUE) of Pacific herring $\operatorname{tn~} \mathrm{kg} / \mathrm{km}$. Triangle $=$ less than $1 \mathrm{~kg} / \mathrm{km}$, plus $=$ no herring caught at station,

Figure 3.--Length frequency of Pacific. herring captured

SPECIES 21110 ALL STRATA CLUPEA HARENGUS PALLASI PACIFIC HERRING
82 ES NMML/RACE SEPT-OCT
MEAN LENGTH $=28.8$ FEMALE during SeptemberOctober 1982 in the eastern Bering Sea by the R/V MILLER FREEMAN.

SPECIES 21110
CLUPEA HARENGUS PALL SIRASITA
PACIFIC HERRING
82 LBS NMML/RACE SEPT-OCT
MEAN LENGTH $=28.4$ MALE

Marine Resources Company

HEAD OFFICE:
192 Nickerson
Suite 307
Seattle, Washington 98109
Phone: (206) 285-6424
Telex: 277115 MRC UR

NAKHODKA OFFICE:
Verkhne - Morskaya, 134
Nakhodka 17
Primorski Krai
692900 U.S.S.R
Telex: 213118 MRK SU
December 2, 1982

Jim Branson, Executive Director North Pacific Fisheries Management Council Post Office Box 3136 DT Anchorage, Alaska 99510

Dear Jim,
Enclosed is our proposed adjustment to the latest revisions being considered for the Bering Sea/Aleutian-Island-FMP. We understand the Coucil in meetings together with the Board of Fisheries have on their agenda a discussion of these recent revisions and we would like our proposed adjustment to be included. You will find it similar yet not identical to a proposal we made at the July council meeting. I will personally be giving public testimony on the current revision package being considered and this proposal will comprise a portion of my presentation. Additional written testimony will be presented at the time of public testimony but we wanted this portion to be available for any distribution you felt advisable.

MS/kr
Enclosure

Marine Resources Company

HEAD OFFICE:
192 Nickerson
Suite 307
Seattle, Washington 98109
Phone: (206) 285-6424
Telex: 277115 MRC UR

NAKHODKA OFFICE:
Verkhne - Morskaya, 134
Nakhodka 17
Primorski Krai
692900 U.S.S.R
Telex: 213118 MRK SU

PROPOSED ADJUSTMENT OF BERING/CHUKCHI SEA FMP

PURPOSE: To resolve the present conflicts about procedures for allowing or not allowing an offshore domestic fishery for herring. "This Proposal is a compromise approach intended to balance the interests and concerns of the parties on both sides of this question. This amendment if accepted may also substantially reduce the likelihood that the plan will be contested in court of law by one or both of the parties.

TEXT: In the first three years following the implementation of this FMP an offshore domestic fishery at the minimum level of 10,000 tons will be authorized on an experimental basis. The fishery will be authorized for the period October through April and shall be conducted north of $56^{\circ} 00^{\prime} \mathrm{N}$ Latitude in the Bering sea. If on a year by year basis the inshore fishery significantly underharvests the resource then the Secretary/Council/Regional Director may increase the allocation to the domestic offshore fishery up to a maximum limit of 50% of the relevant final OY. At the end of this three period the impact and benefits of this experimental offshore fishery will be evaluated to determine the future of such an allocation approach.

RATIONALIZATION:

1) Proposal suggest a rather moderate level for the offshore fishery. Some minimum quantity must be assured to give the catching and processing industry an opportunity to gain experience with the species as afood fish: where and how to catch it, what the concentrations are like, how to handle and process it together with the very important task of exploring and developing diverse markets. With the many conservative factors already incorporated into the plan for determining biomass estimates, setting exploitation rates and other management measures this level of allocation seems quite defensible from a biological point of view.
(continued)

RATIONALIZATION:
2) The allocation is not permanent. After three years it may be eliminated or modified if necessary.
3) If evidence exists or can be generated thru monitoring of the limited offshore fishery, while it is in process, that there exists discrete spawning stocks mixing in offshore areas which are significantly and adversely impacted by the offshore fishery then the Council/Regional Director/ Secretary may have in season control and make changes.
4) The domestic trawler fleet is in dire need of any and all kinds of markets, particularly as a result of the very poor prospects over the next few years for sustaining income from the crab fisheries.
5) The council has established a precedent for allowing a "domestic fishery on an experimental basis" in an area of domestic concern over species composition. The Bering Sea/Aleutian Island FMP provides for domestic trawling "on an experimental basis". within the pot sanctuary.
6) Given the lack of significant risk in conducting an offshore fishery at moderate levels the ultimate justification for this experimental fishery is the opportunity to generate useful data. Nobody can argue that many of the most difficult problems associated with finalizing this plan result from lack of data. An offshore fishery offers the very best opportunity to generate some of this needed data. Fishery managers must of course base their decisions on the best data available. Responsible management however should seek out and encourage the generation of this data so that the largest possible base of objective information is available for consideration.

2 December 1982

Garvey, Schubert, Adams \& Barer

December 1, 1982

Mr. Jim H. Branson
Executive Director
North Pacific Eishery Management Council
P.O. Box 313

Anchorage, AK 99510
Re: Proposed Herring EMP
Dear Jim:
As attorneys for the Japanese Deep Sea Trawlers Association and the Hokuten Trawlers Association, we are submitting the following comments on the proposed revisions of the Herring EMP for your review:

I. Allowable Incidental Catch (AIC).

Although it is implied that foreign fishermen may retain herring that are incidentally caught while harvesting groundfish up to each nation's AIC limit, this is nowhere expressly stated in the EMP. This oversight should be corrected by modifying $\S 13.0$ to include the following:
"Although the TALFE for herring is equal to zero, herring may be retained by a foreign nation's fishing vessels up to the limits of that nation's AIC allocation."

Section 13.0 originally contained the following language:
"This AIC is thus part of the groundfish OY and may be retained."

The newly proposed Section 13.0 was completely rewritten and omits any mention of AIC retention. We believe that such retention is intended by the Council and therefore language to this effect should be included in the FMP.
II. Herring Savings Closure.

Sections 14.3.2(iii) and 14.4.1(ii) should be revised to clarify that the herring savings area will be closed on a nation-by-

Mr. Jim H. Branson
December 1, 1982
Page 2
nation basis; i.e., that a nation's fishing operations in the herring savings area will be terminated only when that nation's incidental herring catch reaches the specified level. We suggest that §§14.3.2(iii) (relating to the domestic fisheries) and 14.4.1 (relating to the foreign fisheries) be revised as follows:
"All or part of the herring savings area . . . will be closed to domestic herring and groundfísh trawl fisheries by the Regional Director, if:
"A. DAH and the domestic AIC have been harvested;
"B. The amount of remaining Domestic Annual Harvest (DAH) and domestic AIC can be harvested "within one reporting period (one

FMP §14.3.2(iii).
"All or part of the herring savings area, - . . will be closed to a nation's herring and groundfish trawl fisheries by the Regional Director, in consultation with the council, if:
(a) There is no remaining AIC for that nation; or
(b) The amount of remaining AIC for that nation can be harvested within one reporting period (one week)."

FMP §14.4.1(ii).
III. Regional Director's Discretion to Exempt Certain

Gear types which do not catch herring above trace amounts are exempt from the herring savings closure. If trawl gear is developed which has a similarly insignificant impact on herring, the Regional Director should be authorized to exempt such gear from the herring savings closure. We suggest that $\$ 14.3 .2(i i i)$ and §14.4.1(ii) be modified by adding the following provision:

Mr. Jim H. Branson
December 1, 1982
Page 3

> "The herring savings closure applies to trawl gear only. Long line, pot or other gear types (including improved trawl gear approved by the Regional Director) which are not utilized to fish for herring or catch herring above trace amounts (less than 0.001% of total catch) are exempt from this time-area restriction."

Conclusion
We believe that the changes suggested would clarify and improve the herring FMP.

Thank you for this opportunity to express our views.
Very truly yours,
GARVEY, SCHUBERT, ADAMS \& BARER

By
Stephen B. Johnson
KJD: je

Anchorage December 7, 1982

Mr. Chairman, Council and Board Members, my name is Mick Stevens and I am Operations Manager for Marine Resources Company, Inc.

For the past 4 winters we have attempted to gain permission and conduct an offshore fishery for winter herring as a food fish harvested by United States fishermen. We have been thwarted in our efforts at every turn by legal action, lack of proper Preliminary Management Plans and lack of fishery management plans. We are frustrated but not about to give up.

At the July meeting, the Council decided to pull the plan back from secretarial review to make some minor changes to solve one basic issue. We understood that the stated intentions of the Council was to not make major changes requiring substantial review. Council members expressed frustration that they had already spent so much time deliberating on this plan already that they weren't willing to entertain major revisions. Now we see the council has succumbed to pressure from one interest group and gone beyond their intentions by producing some revisions with significant connotations. We are
very disappointed.

From our viewpoint the plan as revised by the October 6 package is totally unacceptable. I would now like to highlight some of the problems we see with it.

1) The plan states that the maximum exploitation rate over the herring resource shall be 20\%. A lengthy plan amendment would be required to change it, which means no opportunity for in season adjustment. This is too rigid and although you may want to manage at or below 20% as a guideline, the opportunity should exist for adjustment. If the biomass raises above MSY perhaps one should harvest more herring so that if a spawner-recruit relationship exists, it's possible to smooth out the peaks and valleys of the resource's abundance to provide for more stable conditions for the commercial industry.
2) The Plan provides no mechanisms for increasing optimum yield during the season. There is no upside potential, only downside potential exists. The revised package pays platitudes to a "framework plan" providing for "flexible management" and rapid incorporation of new data. This is hypocracy.
3) The single biggest problem with putting this plan together has been the lack of data and controvery over what data actually exists. This turmoil can be exemplified by comparing two biomass estimates which exist at the present time. The State
of Alaska Department of Fish and Game in its December 1982 "Report to the Alaska Board of Fisheries and North Pacific Fishery Management Council Concerning Bering Sea/Aleutian Islands Herring Management" on page 9 table 6 estimates the biomass of Pacific Herring in eastern Bering Sea for 1982 at 119,000 metric tons. These estimates come from observation of the spawning biomass inshore only. There is no attempt to adjust this estimate upward to include age 3 herring and the age 4 and above herring which don't happen to migrate inshore. At the same time 1982 "Northwest and Alaska Fishery Center Resource Survey Cruises during September-October, 1982" as reported by Vidar G. Wespestad and Jeffery June estimate the biomass of the herring resource for the survey area only between the Aleutian Peninsula and the Pribilof Islands at 168,698 metric tons. It is believed that the major offshore wintering grounds are located north of the Pribilofs. These grounds are located north of the Pribilofs. These differences in biomass estimates have yet to be reconciled.

You have moderate funding proposals to gain more data but even they are likely to not be met. You also have a proposal to hold yp an offshore fishery for the next 5 years so that 1 million dollars can be spent on a tagging study or some such other thing. Even if the million dollars was available this would still be a step backwards. A test fishery, an
experimental commercial fishery at a moderate level, closely monitored and studied by the biologist is the only way, repeat only way to get the synoptically complete and useful information about what a commercial fishery out there will actually be like and its effect or lack thereof.
4) You also have heard the proposal that if there is any surplus following the inshore roe fishery then it's better to take the surplus in a summer food and bait fishery along the Peninsula than offshore in the winter. This is also an incomplete solution because a) U.S. catcher boats still need opportunities to expand their winter markets and an offshore herring fishery would promote faster development of pollock fisheries since pollock is also available in the same wintering areas. b) The large Togiak component of the resource probably makes up a larger percentage of the offshore stock than early scale analysis data shows of its percent composition along the Aleutian Islands summer grounds. Nelson Island and Port Moeller stocks are important components of this summer fishery and therefore it may be more delicately subject to adverse impact on the smaller components.
5) The results of the revision package indicate that herring will really no longer be a jointly managed resource with the

Board of Fisheries. This is of course counter to your previously often expressed objectives. The council no longer sets a total OY for this resource, rather only deals with the offshore component after the State has done whatever they want with it. Thus the Council has little authority to conserve the herring resource. Herring is biologically and managment-wise a resource of the Fishery Conservation zone as well as a resource of the territorial sea and state waters. These new revisions now go much further in reducing the chance of an offshore fishery under all conditions than it does in preventing overfishing. If the region's legal counsel is so concerned with reducing the possibilities of overfishing then let's not forget to talk about the need to scrutinize the State's management of the inshore fishery.
6) We understand the State's opposition and the Region's reservations to the previous plan originated from concern over a worst case scenario. In a year in which the ice remains late on the spawning grounds, or in which weather prevents an effective onshore fishery, strict adherence to the $A B C$ and $O Y$ formulas of the plan would provide for a substantial offshore fishery. Risk of fishing of individual stocks (assuming they really exist) might be increased. Therefore, the State wanted some mechanism in the plan so that the Secretary would have discretion in reducing the level
of any offshore allocation. Since the offshore fishery wouldn't legally open till autumn there would be sufficient time following the aborted inshore fishery to decide the details.

However, the October 6 revision package goes considerably beyond just addressing this particular issue. Provisions now allow for an automatic dividing by two or cut-in-half of whatever might remain following an inshore fishery, then subtracting the AIC whether it is actually harvested or stays swimming around at sea. The remaining pittance then has 2,000 ton and 10,000 ton limits imposed upon it. Never less than 2000 tons and never, repeat never according to this plan will the winter apportionment be allowed to exceed 10,000 metric tons. Mr. Chairman, the absurdity of these conditions is that now they apply under all possible scenarios, not just under the worse case scenario which prompted the quest for revisions in the first place. Further, there is an additional condition that "under exceptional circumstances" these amounts can be further reduced by NMFS. I find the imbalance incredible.
8) The mechanics of the computations for a winter offshore allocation taking into consideration the findings of your Scientific and Statistical Committee, show that allocations are being made for the sake of allocation. Allocations are
being made for political reasons to hopefully try to prevent a lawsuit by the western Alaska Natives together with the State of Alaska. Your scientific experts have told you in written reports and public testimony that there is no scientific basis for dividing by 2 and placing 2000 and 10,000 ton limits on the offshore fishery if a surplus exists. Your scientists have told you there is little risk of overfishing even if the entire or is harvested offshore because of all the conservative factors incorporated into the plan already. They have even gone on record stating that they see these revisions are not conservationally motivated or justifiable, rather they are politically motivated.

Judging from this record and the wording of National Standard \#4 which requires all FMP's to be "reasonably calculated to promote conservation" it seems clear that with these revisions the plan can be shown to violate this edict.
8) Mr. Chairman, it also should be pointed out that with this revision package in place and under any condition where the inshore fishery does harvest the ABC and offshore allocation is warranted, it is virtually guaranteed that the OY for the overall herring resource cannot be achieved. By dividing by 2 and placing a $10,000 \mathrm{mt}$ cap on any further harvest you have institutionalized underharvesting.
9) The Council has maintained consistently that they wanted joint management over herring and that they wanted to provide for the opportunity for an offshore harvest under certain conditions. What I see in the revision package now is that the council has relinquished so much management control to the State and accepted such a rigid formula for allocating offshore that likely 9 years out of 10 or even more you won't have any offshore fishery at all. Politically, that satisfies some interests but unless your objectives have changed for which you haven't announced publicly from a management point of view, I think you have to recognize that you have failed to balance the multiple interests at all. Practically speaking, there is no balance, it is all one sided.
10) I think the National Marine Fisheries Service, Alaska region and the Council made a mistake when they succumbed to pressure from legal advisers and the State and revised the mechanics of allocating herring to an offshore fishery under the guise of providing necessary protection from overfishing. The plan is now worse and less defensible than it was before. The previous plan might have passed through Washington but the fear was that a lawsuit would result. The new revised plan couldn't possibly even pass through Washington successfully and I can most definitely assure you that it will see legal action against it if it is implemented.
11) To take a constructive turn we have a proposal which could perhaps best be blended into the previous plan that was sent at one time to the Secretary. Text of the proposal is included as Appendix I. Our proposal involves an experimental winter offshore fishery at a moderate level of 10,000 metric tons for each of the next three years. Results would be assessed and the future of any offshore fishery would then be completely open. Within this experimental fishery harvesting and processing platforms would be provided free of charge to State and Federal biologists for scale analysis studies, wire coded tagging experiments, electrophorisis genetic studies, biomass estimates or any type of research desired. We feel this offers the best practical opportunity for synoptically valuable information to be provided.

Thank you for the opportunity to present these comments.

Marine Resources Company

HEAD OFFICE:
192 Nickerson
Suite 307
Seattle, Washington 98109
Phone: (206) 285-6424
Telex: 277115 MR UR

NAKHODKA OFFICE:
Verkhne - Morskaya, 134
Nakhodka 17
Primorski Krai
692900 U.S.S.R
Telex: 213118 MK GU

PROPOSED ADJUSTMENT OF BERING/CHUKCHI SEA FP

PURPOSE: To resolve the present conflicts about procedures for allowing or not allowing an offshore domestic fishery for herring. This Proposal is a compromise approach intended to balance the interests and concerns of the parties on both sides of this question. This amendment if accepted may also substantially reduce the likelihood that the plan will be contested in court of law by one or both of the parties.

TEXT: In the first three years following the implementation of this FMP an offshore domestic fishery at the minimum level of 10,000 tons will be authorized on an experimental basis. The fishery will be authorized for the period October through April and shall be conducted north of $56^{\circ} 00^{\prime} \mathrm{N}$ Latitude in the Bering Sea. If on a year by year basis the inshore fishery significantly underharvests the resource then the Secretary/Council/Regional Director may increase the allocation to the domestic offshore fishery up to a maximum limit of 50% of the relevant final OY. At the end of this three period the impact and benefits of this experimental offshore fishery will be evaluated to determine the future of such an allocation approach.
RATIONALIZATION:

1) Proposal suggest a rather moderate level for the offshore fishery. Some minimum quantity must be assured to give the catching and processing industry an opportunity to gain experience with the species as:afood fish: where and how to catch it, what the concentrations are like, how to handle and process it together with the very important task of exploring and developing diverse markets. With the many conservative factors already incorporated into the plan for determining biomass estimates, setting exploitation rates and other management measures this level of allocation seems quite defensible from a biological point of view.

PROPOSED ADJUSTMENT OF BERING/CHUKCHI SEA FMP

(continued)

RATIONALIZATION:
2) The allocation is not permanent. After three years it may be eliminated or modified if necessary.
3) If evidence exists or can be generated thru monitoring of the limited offshore fishery, while it is in process, that there exists discrete spawning stocks mixing in offshore areas which are significantly and adversely impacted by the offshore fishery then the Council/Regional Director/ Secretary may have in season control and make changes.
4) The domestic trawler fleet is in dire need of any and all kinds of markets, particularly as a result of the very poor prospects over the next few years for sustaining income from the crab fisheries.
5) The council has established a precedent for allowing a "domestic fishery on an experimental basis" in an area of domestic concern over species composition. The Bering Sea/Aleutian Island FMP provides for domestic trawling "on an experimental basis" within the pot sanctuary.
6) Given the lack of significant risk in conducting an offshore fishery at moderate levels the ultimate justification for this experimental fishery is the opportunity to generate useful data. Nobody can argue that many of the most difficult problems associated with finalizing this plan result from lack of data. An offshore fishery offers the very best opportunity to generate some of this needed data. Fishery managers must of course base their decisions on the best data available. Responsible management however should seek out and encourage the generation of this data so that the largest possible base of objective information is available for consideration.

[^0]: Bering Sea, Alaska 1909-1.82.

[^1]: Secretary

[^2]: Secretary

