Borealization and snow crab: research update and rebuilding considerations

Mike Litzow, with contributions from Erin Fedewa, Brendan Connors, Lisa Eisner, David Kimmel, Trond Kristiansen, Mike Malick, and Jens Nielsen

Outline

- Update borealization approach with 2022 data
- Review evidence for attribution of borealization to human causes
- Evaluate time blocks considered for rebuilding projections which is most plausible in current climate?

Update borealization approach with 2022 data

Collapse coincides with rapid borealization

Ecosystem properties associated with borealization

Arctic

 \bigstar Hypothesized proximate mechanisms

Borealization index: Individual time series

Longitude

Borealization index: Individual time series

Create borealization index by summarizing variability shared across time series

Borealization index

- Dynamic Factor Analysis model
- Eight candidate formulations (1 or 2 trends, each with 4 candidate error / variance-covariance matrices)
- Best model is 1-trend, different variances, no covariance

Borealization index – loadings and trend updated for 2022

Response variable: Immature abundance 1980-2022, with estimated 2020 value and uncertainty

Multiple imputation using:

- Model mature male snow crab abundance
- Model mature female snow crab abundance
- Model age3+ pollock
- Model age2+ yellowfin
- Model female Alaska plaice biomass

Borealization effects on abundance

Bayesian autoregressive regression model:

 $abundance_{t+1} \sim abundance_t + s(borealization_trend_t) + \varepsilon$

Attribution of Bering Sea borealization to human-caused global warming

23 CMIP6 models

- Weighted for bias, autocorrelation, lowfrequency prediction (compared with observations)
- Corrected for differences in climate sensitivity and predicted warming rate (model democracy)

North Pacific sea surface temperature

Borealization maps onto annual sea surface temperature

2018 2019 **Borealization index** Posterior mean with 198²⁰²0 80 / 90 / 95% credible intervals -1 --2 SST anomaly wrt 1854-1949 (SD)

Borealization maps onto annual sea surface temperature

Two attribution statistics: Fraction of Attributable Risk (FAR) and Risk Ratio

Risk Ratio: how much more likely is an event due to human activity?

Risk Ratio = 1 / (1-FAR)

Recent Bering Sea SST extremes are human-caused

Posterior mean with 95% credible intervals

Rapid borealization events occur during human-caused SST extremes

Borealization index 2 · Posterior mean with 80 / 90 / 95% credible intervals 199801 0. -1 -2 **Risk ratio**

Evaluating candidate time blocks of *M* and *R* for rebuilding projections

Which time block is the most plausible representation of the current climate?

Annual SST anomaly distributions for four proposed time blocks

Metric for comparing time blocks with estimated current climate: proportion of SST anomalies > 4SD

Candidate time blocks for rebuilding projections

Estimating warming rate to define current climate

Projection time blocks compared with estimated current climate

Eastern Bering Sea SST distributions for different North Pacific warming levels (weighted CMIP6 projections)

Conclusion: 2005-2019 is the most plausible representation of current climate Eastern Bering Sea SST distributions for

different North Pacific warming levels (weighted CMIP6 projections)

<u>Uncertainties</u>

- Ability of global models to replicate regional variability
- Ability of models to capture atmosphereocean interactions in addition to thermodynamics
- Sensitivity to model-weighting approach

Projection time blocks compared with estimated current climate

Eastern Bering Sea SST distributions for different North Pacific warming levels (weighted CMIP6 projections)

Time blocks (observed Eastern Bering Sea SST)

Conclusion: 2005-2019 is the most plausible representation of current climate

Eastern Bering Sea SST distributions for different North Pacific warming levels (weighted CMIP6 projections)

Time blocks (observed Eastern Bering Sea SST)

Questions