

Genetic stock composition of chum salmon bycatch from the 2022 BSAI pollock trawl fishery

Preliminary Results:

Presented to the North Pacific Fisheries Management Council April 2023

P Barry, C Kondzela, J Whittle, K D'Amelio, D. Nicolls, K. Karpan, & W Larson

Chum salmon Prohibited Species catch (Bycatch)

99% in B-season

Average bycatch 1991-2021 ~ 188,000 chum salmon

Timing of chum salmon bycatch

Spatial distribution of chum salmon bycatch

- 63% in Cluster 1
- 12% in Cluster 2
- 19% in Cluster 3
- 6% in Cluster 4
- Little fishing effort in Cluster 4

How has it changed over time?

2011

Paye +

2016

Variability in spatial distribution by sector

Genetic sampling by week and area

Observer on catcherprocessor ran out of envelopes

Undersampled by ~70 samples after 1 in 2 subsampling in lab

Chum salmon Genetic baseline

6 reporting groups **B.** SE Asia, NE Asia C. Coastal Western Alaska, Upper Midc Yukon

D. Southwest Alaska E. EGOA / PNW

Chum salmon stock proportions: 2022 B-season

B-season (PSC = 242,244; n = 3346)

Region	Est. num.	Est. CI	Mean	2.5%	97.5%
SE Asia	26,369	23,704-29,174	0.109	0.098	0.120
NE Asia	79,662	75,551-83,840	0.329	0.312	0.346
W Alaska	51,092	47,380-54,865	0.211	0.196	0.226
Up/Mid Yukon	4,616	3,257-6,280	0.019	0.013	0.026
SW Alaska	8,746	6,639-11,006	0.036	0.027	0.045
E GOA/PNW	71,755	67,824-75,744	0.296	0.280	0.313

Chum salmon stock proportions through time

Chum salmon numbers through time

W Alaska

East to West

S Early to Late

S East to West

S Early to Late

Spatiotemporal variation W Alaska (2011-2022)

Spatiotemporal variation W Alaska (2011-2022)

Fishing sectors

Fishing sectors

Age specific mixtures - Chum Salmon 2022*

- Younger ages mostly EGOA/PNW
- Oldest age mostly NE Asia
- * ~50% complete

Kotzebue Sound analysis

Baseline collection:

8 populations

Kotzebue Sound 2022 B-season

B-season (PSC = 242,244; n = 3,260)

Region	Est. num.	Est. CI	Mean	2.5%	97.5%
SE Asia	26,776	24,038-29,623	0.111	0.099	0.122
NE Asia	80,669	76,465-84,888	0.333	0.316	0.350
Kotzebue Sound	10,772	8,671-13,023	0.044	0.036	0.054
W Alaska	40,493	36,768-44,324	0.167	0.152	0.183
Up/Mid Yukon	3,917	2,548-5,516	0.016	0.011	0.023
SW Alaska	8,630	6,460-11,012	0.036	0.027	0.045
EGOA/PNW	70,983	66,975-75,024	0.293	0.276	0.310

Summary for Western Alaska

- Proportion Large increase from 2021 & 2022, slightly above long-term average
 - 21% of the bycatch (17% excluding Kotzebue Sound)
- Estimated number Similar to long-term average despite large reduction in overall bycatch
 - 51,000 chum salmon (40,500 excluding Kotzebue Sound)
- Higher proportion in eastern fishing grounds
 - East of 170, Clusters 1 & 2

Acknowledgements

<u>AFSC ABL</u> - C. Guthrie, E. Yasumiishi, D. Baetscher, M. Chan
<u>AFSC FMA</u> - M. Concepcion, B. Mason, J. Cahalan, and a village
<u>AKFIN</u> - C. Kohler, R. Ames, R. Ryznar, M. Callahan
<u>ADFG GCL</u> - C. Habicht, T. Dann, E. Lee
<u>ADFG MTAL</u> - J. Neil, D. Oxman, B. Agler, T. Frawley

Questions?

Patrick Barry <u>Patrick.Barry@noaa.gov</u>

Prior Years Tech Memos:

https://www.fisheries.noaa.gov/alaska/science-data/genetics-research-alaska-fisheries-science-center

Years Colored

Spatial Distribution with Sea Surface Temperature

Spatiotemporal variation (2011-2022)

Chum Ages

Fishing Grounds 2022

Kotzebue Sound Analysis

Kotzebue Sound is slightly biased low

CWAK absorbs the misassigned KS fish

Breaking it out, we will unlikely overestimate contribution of KS

Kotzebue Sound 2020-2022 B-season

