

NOAA

FISHERIES

BSAI Crab Rationalization Program 10 year review: Community Vulnerability and Well-Being Indices

Amber Himes-Cornell and Stephen Kasperski Alaska Fisheries Science Center

North Pacific Fishery Management Council Scientific and Statistical Committee April 6, 2015 – Anchorage, Alaska

Outline

NOAA

NATIONAL

- Background
- What are we measuring?
- Methods: Development of the Indices
- Application in the 10 year review

Social indices of vulnerability and resiliency

- National and international focus on use of indicators to measure well-being in communities
- Jacob and Jepson (2007) and Jacob et al (2010) Gulf Coast fishing communities
 - Created vulnerability index to measure community sustainability and fishery dependence in the face of changing fisheries regulations
- Colburn and Jepson (2013) Northeast and Southeast fishing communities
 - Also include indicators of gentrification
- Being incorporated into analyses for each of the East Coast Councils
- Applicability
 - Fisheries management program performance (e.g., catch shares), predicting social impacts of proposed management programs (and doing social impact statements), vulnerability to climate change

What are we measuring?

- Vulnerability is about the *existing condition*
 - Easy to measure from existing data
- Resilience is about the *response to change over time*
 - More difficult to measure until after an event occurs
- Need to track vulnerability over time to understand community resilience
- We consider well-being to encompass both concepts of vulnerability and resilience, as well as other components.
 - Recognizing that that well-being is a multi-faceted concept, made up of objective, subjective and inter-relational components (Coulthard et al. 2011).

Method: Principal Component Factor Analysis

- Identify variables that represent the well-being concepts
- Conduct a principal components analysis
 - Varimax Rotation
 - Kaiser Normalization
 - Achieve a single factor solution
- Create index scores from the rotated factor loadings using the regression method
- Group the least vulnerable 20% (yellow), middle 60% (orange) and most vulnerable 20% (red) communities by index scores

Overall community scores

- For each index (7 social; 7 fisheries):
 - Each community is given a score of 1 if they are +/- 1 standard deviation above the mean index score and a 0 otherwise
- Dichotomized score is then summed for each community
 - Across all socio-economic well-being indices
 - Across all fishing involvement indices

	Personal	Population		Labor Force	Housing	Housing	Status of	Total Social
Community	Disruption	Composition	Poverty	Structure	Characteristics	Disruption	Schools	Score
Kokhanok	1	1	1	0	0	1	0	4
Akutan	0	1	0	1	0	0	1	3
Anvik	1	0	1	0	0	0	1	3
Chevak	1	1	1	0	0	0	0	3
Clark's Point	1	0	1	0	0	0	1	3
False Pass	0	1	0	1	0	0	1	3
Gakona	0	0	0	1	0	1	1	3
Gambell	1	1	1	0	0	0	0	3
Goodnews Bay	1	1	0	0	0	1	0	3
Hooper Bay	1	1	1	0	0	0	0	3
Karluk	1	1	0	0	0	0	1	3
Koyuk	1	1	1	0	0	0	0	3
Koyukuk	1	1	0	0	0	0	1	3
Mentasta Lake	1	0	1	0	0	0	1	3
Napakiak	1	1	1	0	0	0	0	3
Nikolai	1	0	1	0	0	0	1	3
Northway	1	1	1	0	0	0	0	3
Northway Village	1	1	1	0	0	0	0	3
Platinum	1	0	1	0	0	0	1	3
Quinhagak	1	1	1	0	0	0	0	3
Savoonga	1	1	1	0	0	0	0	3
Stebbins	1	1	1	0	0	0	0	3
Takotna	1	1	0	0	0	0	1	3
Tanacross	1	0	0	1	0	0	1	3
Tuluksak	1	1	1	0	0	0	0	3
Tuntutuliak	1	1	1	0	0	0	0	3

Social indices: Top 26 communities overall

Fisheries indices

	Commercial	Commercial	Commercial	Commercial	Decreational	Decreational	Subsistence	Total Fichary
Community	Engagement	Engagement	Reliance	Reliance	Engagement	Reliance	Involvement	Score
Elfin Cove	0	1	1	1	1	1	0	5
Kasilof	0	1	0	1	1	1	1	5
Cordova	1	1	0	1	1	0	0	4
Craig	0	1	0	1	1	1	0	4
Dillingham	1	1	0	1	1	0	0	4
Egegik	1	1	1	1	0	0	0	4
Homer	1	1	0	1	1	0	0	4
Kodiak	1	1	0	1	1	0	0	4
Pelican	0	1	0	1	1	1	0	4
Petersburg	1	1	0	1	1	0	0	4
Port Alexander	0	1	0	1	1	1	0	4
Port Lions	0	1	0	1	1	1	0	4
Soldotna	0	1	0	0	1	1	1	4
Wrangell	1	1	0	1	1	0	0	4

Fisheries indices: Top 14 communities overall

-1 Standard Deviation Commercial Fishing Engagement Elfin Cove - Commercial Processing Engagement 13.5 ----- Commercial Fishing Reliance Wrangell Kasilof 11.5 ---- Commercial Processing Reliance 9.5 ----- Recreational Fishing Engagement Soldotna Cordova 7.5 •••••• Recreational Fishing Reliance 5.5 - - Subsitence Harvesting Involvement 3.5 Port Lions Craig Port Alexander Dillingham Petersburg

Pelican

Kodiak

Homer

Egegik

Fisheries indices: Top 14 communities overall

-1 Standard Deviation Commercial Fishing Engagement Elfin Cove - Commercial Processing Engagement 5.5 ----- Commercial Fishing Reliance Wrangell Kasilof 4.5 ---- Commercial Processing Reliance 3. ----- Recreational Fishing Engagement Soldotna Cordova •••••• Recreational Fishing Reliance - - Subsitence Harvesting Involvement Port Lions Craig Port Alexander Dillingham Petersburg Egegik Pelican Homer

Kodiak

Application of Indices to the Crab Rationalization Program 10 year review

Using indices to measure catch share performance

- It is important to modify indices to reflect changes before and after catch share program implementation
 - Time frame of social data
 - Need to compare changes before and after program implementation (not just using the 2005-2009 average values from the ACS), which may be difficult with current social data from the U.S. Census
 - Fishery engagement should be catch share program specific
 - Some communities may be actively involved in fisheries but have little involvement in the catch share program which can lead to errors in predicting impacts
 - Fishery dependence should be measured over all fisheries
 - Some communities may only be involved in 1 or 2 fisheries and are therefore very reliant on those particular fisheries
 - Dependence = share of all fishing in community

Overall Processing Engagement

Sablefish IFQ Processing Engagement

Possible Analyses

- 1. Fisheries dependence and engagement indices
 - Annually 2000 to present
- 2. Socio-economic well-being indices
 - 2000, average of 2005-09 and 2010-14 (if available)
- 3. Measurement of community change over time
 - Comparison of 2000 to present

Measuring Community Changes Over Time

- There are certain scenarios that will cause change in a subset of indices, but not all indices
- Dependent communities will have the most difference before and after treatment (e.g., fisheries management change)

Example Test Case

NOAA FISHERIES

Measuring Community Changes Over Time Simple Approach: Differences-in-differences

Assesses the average treatment effect of program implementation on indicators of well being

<u>Treatment</u> = Communities					
dependent on crab					
<u>Control</u> = Communities not					
dependent on crab, but					
dependent on fisheries					
overall					

Average number of vessels	Control: Crab Independent	Treatment: Crab Dependent	
Before Rationalization	50	60	
After Rationalization	45	20	
Differences	50-45= 5	60-20= 40	
Differences in Differences	5-40 = -35		

Questions?Contact: Dr. Amber Himes-Cornell* Email: amber.himes@noaa.gov*** Phone: (206) 526-4221 *

