Development of an Atlantis ecosystem model for the Gulf of Alaska

Alberto Rovellini – AFSC, University of Washington (Seattle)
Martin Dorn – AFSC
September 22nd, 2021
Introduction

- Alberto Rovellini: Postdoc at AFSC and University of Washington
- Worked on an Atlantis model for the Great Barrier Reef (Victoria University of Wellington – New Zealand – and CSIRO – Australia)
  - Focus on integrating benthic organisms in an ecosystem model for a coral reef
  - Extended the Atlantis code to capture some benthic ecological processes
- Primary collaborators for this project: Martin Dorn, Andre Punt (UW), Isaac Kaplan (NWFSC)
Brief overview of Atlantis
Atlantis ecosystem model

**Original purpose:** to create a “virtual ecosystem” for scenario evaluation and hypothesis testing

- “End-to-end” ecosystem model
- Developed by Dr Beth Fulton (CSIRO)
- Early 2000’s
- Holistic representation of marine ecosystems
Technical overview

- C++ simulation code base
- Forward difference equations describing production and consumption in the system
- Tracks nutrients through the ecosystem (nitrogen is the “common currency”)

Porobic et al. 2019
Technical overview

- C++ simulation code base
- Forward difference equations describing production and consumption in the system
- Tracks nutrients through the ecosystem (nitrogen is the “common currency”)
- 3-dimensional structure: set of polygons and vertical layers
- Linked to oceanographic models (e.g., ROMS)
Technical overview

- Optionally linked to biogeochemical models (e.g. NPZ)
- Modules for fishery and economy (2-way coupling)
- Invertebrates: biomass pools
- Vertebrates: age structured
- Multiple options for movement, predation, recruitment, response to environmental variables, etc.
Model building and parametrisation

Data hungry

- Model geometry: topography, biogeography, management boundaries, etc.
- Physics: Oceanographic models used to force Atlantis (e.g., ROMS, HYCOM, etc.)
- Biology:
  - Survey data (e.g., bottom trawl surveys, acoustic surveys, mid-water trawl, seabird counts, experiments etc.)
  - Model output: stock assessments, species distribution models, etc.
- Harvest: catch data, observer data, fleet dynamics models
Applications

- Climate change simulation and projection
Applications

- Climate change simulation and projection
- Management strategy evaluation

Porobic et al. 2019

**Fig 5.** Relative change in biomass (A) and abundance (B) for the scenarios with only artisanal, industrial and the historical fisheries (industrial + artisanal). An unfished ecosystem is the base case for comparisons. Note that the y-axes is the ratio of change against the starting conditions—so a -0.5 result indicates a 50% decrease and a 0.5 result indicates a 50% increase.
Applications

- Climate change simulation and projection
- Management strategy evaluation
- Hypothesis testing
- Multi-model inference

Hollowed et al. 2020
Applications

- Climate change simulation and projection
- Management strategy evaluation
- Hypothesis testing
- Multi-model inference

Strategic advice to Ecosystem-Based Fishery Management

Hollowed et al. 2020
30+ applications to date, and growing (Audzijonyte et al. 2019)
Atlantis GOA model development
Model geometry

- Spatial extent of the model domain
- Collection of irregular polygons (‘boxes’)
- Homogeneous conditions within one depth layer of one box
- Design based on physical, ecological, and socioeconomic considerations
- Computational constraints to # of boxes
Model geometry: Bathymetry

- Capture:
  - Seafloor morphology
  - Mesoscale topography (e.g., gullies, seamounts, islands)
- Only modelling down to 1000 m depth
- Used ETOPO1 Global Relief Model
To facilitate model parametrization, geometry design may account for:

- Spatial strata
- Sampling areas
- Spatial gaps in data sets
Model geometry: Vertical structure

Vertical structure:

- Discrete depth layers within each box
- Need not to be the same for all boxes, but it helps if it is
Model geometry: Vertical structure

Vertical structure:

- Discrete depth layers within each box
- Need not to be the same for all boxes, but it helps if it is
- It should capture:
  - Ecological processes
  - Vertical distribution of organisms
  - Fishery breaks
  - Etc.
- Atlantis GOA: 6 depth breaks (0 m, 30 m, 100 m, 200 m, 500 m, 1000 m)
Physics: Mapping ROMS to Atlantis

Atlantis has a physical submodel forced by the output of oceanographic models, like ROMS

ROMS variables needed by Atlantis:

- Temperature
- Salinity
- Water velocity

Atlantis GOA: ROMS (CGOA and NEP)
Physics: Mapping ROMS to Atlantis

ROMS $\rho$, $u$, and $v$ grids to Atlantis polygons
(horizontal transformation)
Physics: Mapping ROMS to Atlantis

Horizontal:

- **Boxes**: spatial join of $\rho$ points with Atlantis boxes
- **Faces**: spatial join $u$ and $v$ points with a buffer around the face

---

![ROMS rho points overlapping with Box 55](image1)

![v Points for Face Between Box 102 and Box 103](image2)
Physics: Mapping ROMS to Atlantis

Vertical:

- From terrain-following ROMS vertical coordinates to fixed depth layers
- ROMS vertical coordinates assumed to be fixed over time
Physics: Mapping ROMS to Atlantis

Atlantis Depth Layers

- Depth
- Salinity (ppm)
- Temperature (°C)
- Vertical velocity (m/s)
Physics: Mapping ROMS to Atlantis

Surface temperature from North East Pacific ROMS

NEP: 10 km resolution

Surface temperature from Central GOA ROMS

CGOA: 3 km resolution
Physics: Mapping ROMS to Atlantis

- Initially only NEP 10K (entire model domain)
- Working on ways of performing bias correction and incorporate both models
Model biology: Functional groups

- Need to aggregate species into functional groups

- Grouping based on:
  1. Ecology
  2. Trophic level
  3. Taxonomy
  4. Management considerations (e.g., FMP species complexes)
  5. Habitat considerations (e.g., shelf vs slope)

- Some groups more highly aggregated than others (ecological or commercial interest)
Model biology: Functional groups

- 78 functional groups:
  - 28 bony fish
  - 3 sharks
  - 3 skates
  - 9 mammals
  - 4 birds
  - 26 invertebrates
  - 2 bacteria
  - 3 detritus

- Pollock
- Pacific cod
- Sablefish
- Halibut
- ... 
- Chinook salmon
- ... 
- Shallow water flatfish
- Rockfish demersal shelf
- ... 
- Forage fish
Model biology: Functional groups

- 78 functional groups:
  - 28 bony fish
  - 3 sharks
  - 3 skates
  - 9 mammals
  - 4 birds
  - 26 invertebrates
  - 2 bacteria
  - 3 detritus
  - Dogfish
  - Demersal sharks (Pacific sleeper)
  - Pelagic sharks (Salmon shark)
  - Big skate
  - Longnose skate
  - Other skates
Model biology: Functional groups

- 78 functional groups:
  - 28 bony fish
  - 3 sharks
  - 3 skates
  - 9 mammals
  - 4 birds
  - 26 invertebrates
  - 2 bacteria
  - 3 detritus
  - Resident killer whales
  - Transient killer whales
  - Humpback whales
  - Toothed whales
  - ...
  - Steller sea lion
  - Other pinnipeds
Model biology: Functional groups

- 78 functional groups:
  - 28 bony fish
  - 3 sharks
  - 3 skates
  - 9 mammals
  - 4 birds
  - 26 invertebrates
  - 2 bacteria
  - 3 detritus

- Diving feeders, fish eaters
- Surface feeders, fish eaters
- Diving feeders, inverts eaters
- Surface feeders, inverts eaters
Model biology: Functional groups

- 78 functional groups:
  - 28 bony fish
  - 3 sharks
  - 3 skates
  - 9 mammals
  - 4 birds
  - **26 invertebrates**
    - 2 bacteria
    - 3 detritus
  - King crab
  - Tanner crab
  - Octopus (GPO)
  - Squids
  - ...
  - Sponges
  - Corals
  - ...
  - Large phytoplankton
  - ...
  - Macrozooplankton
Model biology: Functional groups

- 78 functional groups:
  - 28 bony fish
  - 3 sharks
  - 3 skates
  - 9 mammals
  - 4 birds
  - 26 invertebrates
  - 2 bacteria
  - 3 detritus
Spatial distributions

Aim:
- Distribute species biomass between Atlantis boxes at initial conditions (1990)
- Use as constraint to movement in the initial stages of model calibration
- Capture spatial distribution of GOA species in Atlantis, ‘representative’ of the period 1990-present.

Many data sources, for example:
- Essential Fish Habitat (EFH 2017)
- Custom Species Distribution Models (SDMs)
Spatial distributions: Essential Fish Habitat

**Pros:** Accounts for environmental covariates, validation process, ongoing effort

**Cons:** Available for limited species, not available for BC

Adult-arrowtooth-flounder - 2017 EFH models
Spatial distributions: SDMs

Species not modelled in EFH

- Biomass index standardization with geostatistical modelling (sdmTMB)
- Based on bottom trawl survey data (AFSC and DFO)
- Only coordinates and depth
- Average spatial distributions from 1990’s

[Map showing Bottom Trawl Survey Strata and regions of interest]
Spatial distributions: SDMs

Sablefish mean predicted CPUE by Atlantis box (1984-2019) - stage:

Sablefish mean predicted CPUE by Atlantis box (2003-2019) - stage:
Spatial distributions: SDMs

- Estimate proportion of total biomass per box
- Use these proportions to “seed” biomass estimates (e.g., from stock assessments) to the Atlantis domain
- But: it requires a (simple) bias correction between the two data sets
Spatial distributions: Other sources

Bottom trawl data is not suitable to model distributions of all Atlantis groups

- Surface trawl (e.g., GOAIERP, Jamal Moss), midwater trawl (e.g., EcoFOCI) can fill some gaps
- Existing SDMs to inform specific groups
- NPZ to inform plankton
Physical habitat

- Species distributions and ecological processes in Atlantis can be tied to physical habitats
- Geological features from dbSEABED Global Database (Bob McConnaughey)
Biohabitats

Habitat-forming benthos: corals, sponges, other benthic invertebrates

Presence from published SDMs:
- Rooper et al. (2014, 2017): GOA and AI
- Chu et al. (2019): BC
Biology: Life history and biometrics

Atlantis allows for the modelling of growth, trophic interactions, spawning, recruitment, mortality, migrations, movement...

Life history parameters and biometrics from:

- Stock assessments
- Resource Ecology and Ecosystem Modeling Task
- Literature
- Synthesis of global databases (FishBase, R packages like Jim Thorson’s FishLife)
- Other Atlantis models (Puget Sound, California Current)
Biology: Ontogenetic diet preferences

(REEM diet data)
Fisheries in Atlantis

- Initially modelled as “imposed” catch for hindcast runs
- Can be modelled as $F$ in forecast as first simple approximation
- Eventually the goal will be dynamic fishing – but some ways away
Next steps
Next steps: Calibration

- Change input parameters until model dynamics match observations
- Manual and time-consuming process
- One must look at dynamics at different spatial scales
- Parameters commonly adjusted include recruit production, growth and consumption rates, diet preferences

Pethybridge et al. (2019)
Next steps: Sensitivity analysis

Systematic sensitivity analysis is not viable in Atlantis (1000’s of parameters)

Need to:

1. Identify uncertainty parametrization (e.g., for species with limited data)
2. Identify the parameters that the model is most sensitive to
3. Perturb a set of parameters for a set of species
4. Analyze the variability of output metrics of interest
5. Phytoplankton growth and mortality, top predator recruitment (Bracis et al. 2020)
6. Low trophic levels often most sensitive to perturbation (McGregor et al. 2019)

McGregor et al. 2019
Next steps: Validation

Hindcast skill: comparison with historical trends and data
- Can pick a target value (e.g., biomass must be within ±20% of the observation)

Porobic et al. 2019
**Next steps: Validation**

Table 2. List of ecosystem indicators calculated from the NEUS model data and the survey biomass and observed landings data.

<table>
<thead>
<tr>
<th>Ecological indicators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Biomass</td>
<td>Total biomass of fish, benthos, marine mammals, seabirds and cephalopods.</td>
</tr>
<tr>
<td>Total Catch</td>
<td>Total catch of commercial fish and benthos.</td>
</tr>
<tr>
<td>Catch/Biomass</td>
<td>Total catch as proportion of total biomass.</td>
</tr>
<tr>
<td>Fish Biomass</td>
<td>Total biomass of fish species.</td>
</tr>
<tr>
<td>Demersal/Pelagic Ratio</td>
<td>Biomass of all demersal fish as a proportion of biomass of all pelagic fish.</td>
</tr>
<tr>
<td>TEPs</td>
<td>Threatened, endangered, and protected species</td>
</tr>
</tbody>
</table>

Table 3. Skill metrics used in the analysis of ecosystem model skill.

<table>
<thead>
<tr>
<th>Skill Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>Average Error</td>
</tr>
<tr>
<td>AAE</td>
<td>Average Absolute Error</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Squared Error</td>
</tr>
<tr>
<td>MEF</td>
<td>Modeling Efficiency</td>
</tr>
<tr>
<td>S</td>
<td>Spearman Rank Correlation</td>
</tr>
<tr>
<td>P</td>
<td>Pearson Correlation</td>
</tr>
<tr>
<td>K</td>
<td>Kendall Rank Correlation</td>
</tr>
</tbody>
</table>

Olsen et al. 2016
Next steps: Hindcast simulations

- Initialize the model in early-mid 1990’s
- Force the model with ROMS from 1996-2020
- Force removals from catch data

Focus:
- 2013-2016 heat wave
- Evaluate changes in ecosystem productivity
- Identify shifts in community composition, trophic structure, species distributions, etc.
- Evaluate the match of model results with stock assessment models and observations
Next steps: Forecast simulations

- Force the model with ROMS from 2041-2050 and 2081-2090
- Model fishing pressure as fixed $F$ for different fisheries/fleets

Focus:
- Future climate change
- Evaluate changes in ecosystem productivity
- Identify shifts in community composition, trophic structure, species distributions, etc.
- Evaluate the Optimum Yield range for groundfish in the GOA under future climate change
Engagement of the Plan Team and other Council bodies will increase as we move to model calibration, validation, and projections.

We are looking for feedback:

- Apparent issues with model geometry?
- Concerns about species grouping?
- Can we reach out to assessment authors to help us validate model dynamics?

Modelling fisheries:

- Conversations with economists and social scientists to capture GOA fishing fleets
- Evaluating management strategies: what would you like to see us address with this model, when we use it for future projections?
Many contributors

Martin Dorn
Andre Punt
Isaac Kaplan
Beth Fulton
Kerim Aydin
Al Hermann
Madison Weise
Jamal Moss
Bridget Ferriss
Szymon Surma
Gemma Carroll
Owen Liu
Alan Haynie
Marysia Szymkowiak
Bob McConnaughey
Sean Anderson
Ned Laman
Jodi Pirtle
Chris Rooper
Stock assessment authors
... and others