MCMC Posterior Probability Methods

William Stockhausen Alaska Fisheries Science Center NOAA/NMFS Why bother with the "posterior probability distribution" (PPD)?

- better characterizes parameter uncertainty
 - yields full marginal posterior distribution
 - .std file uses multivariate normal assumption and "delta" method
- captures uncertainty for any model output
 - not just parameters and sd_report variables
- want distribution of OFL for p* ABC
 - using the PPD captures full model uncertainty
 - projection model only captures some uncertainty (e.g., starting biomass)

What does MCMC (Markov Chain Monte Carlo) do?

- ideally, want to integrate over the model's PPD to get the marginal posterior distribution for any desired quantity
- generally, too many parameters to do this using standard integration techniques
- MCMC randomly samples desired quantities using the model's PPD to determine relative sampling rates
 - areas with "high" PPD should have many samples taken
 - areas with "low" PPD should have few samples taken
 - sampling should cover the "entire" PPD
 - for ADMB models, the PPD is based on the objective function = likelihood + priors + constraints

MCMC Methods: Metropolis-Hastings Random Walk Method (MHRWM)

- standard method in ADMB
- runs single chain from MLE solution
- requires multiple runs for multiple chains
 - all start at MLE solution
- can require substantial time for complex models
 - long "burn in"
 - substantial thinning of samples for independence
 - can get trapped near local maxima for long times

MCMC Results from the 2017 Tanner crab OFL Calculation

- MCMC used MHRW Method
- 1 chain
- ~3 days to run ~4.4 million iterations
- thinned by factor of 1000
 - ~4,400 samples from PPD

objFun	avgRec	B100	Fmsy	Bmsy	MSY	Fofl	OFL	prjB	
0.03 -									
0.02 -	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	сю <u>ј</u> .
0.01 -	-0.002	-0.00266	0.0025	-0.00266	0.0245	0.0025	-0.018	-0.021	-
0.00									-
275-									
225 -		Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	
200 -	$= - / - \cdot - \cdot - \cdot$	0.481	0.442	0.481	0.736	0.442	0.662	0.405	
175-									-
	. Merti	\wedge							
90 -			Corr:	Corr:	Corr:	Corr:	Corr:	Corr:	- 5
80-			-0.0109	1	0.739	-0.0109	0.765	0.885	00
		\angle							
0.9 -			\wedge						
0.8-		•		Corr:	Corr:	Corr:	Corr:	Corr:	
0.7				-0.0109	0.416	1	0.386	-0.124	ing
		A 1999							
0.6 -	Sec. 4.1			\wedge					
32.5 -			·	/ \	Corri	Corr	Corr	Corr	-,
30.0 -			3		0.739	-0.0109	0.765	0.885	
27.5 -									
14-			x		\wedge				
13-						Corr	Corr	Corri	_
12-		2	in the second	State of the		0.416		0.607	
11-		•		-					
	•	•	• •	•	· · ·	\wedge			÷.
0.9-						/ \		0	
0.8-	5						0.386	-0.124	9
0.7 -			/		• Same				
0.6-	- 		/ 	1644	- 20 0 -		^		1
30-		• والشور		-			/		
25				3				Corr:	9
		• 11						0.000	
20-	••••	.т		;т	• 7				
	a Jackt.	, and	500 S	بجهر ا		Share's		()	
50 -								-/ -	r) -
40-									
200,000,500,000,500									-
2901592000000208.	100 175 200 225 250 275	o 80 90 (0.0 0.7 0.8 0.9	27.5 30.0 32.5	17 12 13 14	0.0 0.7 0.8 0.9	20 25 30	40 50	

MCMC Results from the 2017 Tanner crab model

MCMC Results from the 2017 Tanner crab model

MCMC Analysis

- Best practices (?)
 - run multiple chains from "dispersed" starting points
 - assess convergence of sampling
 - Potential Scale Reduction Factor (\hat{R})
 - compares between-chain to within-chain variability
 - Geweke z-score statistic
 - compares first, last parts of single chain
 - trace plots
 - autocorrelation plots
 - cross correlation
- R Packages
 - coda
 - ggmcmc
 - GGally (pairs plots)

SAFE Reporting Practices: What statistics to report (and when)?

- Tables
 - MLE
 - posterior mean, median, and/or mode?
 - which convergence diagnostics?
- Figures
 - single model
 - MLE
 - posterior mean, median, and/or mode?
 - posterior distribution?
 - which convergence diagnostics?
 - multiple models/quantities
 - MLEs
 - posterior means, medians, and/or modes?
 - posterior distributions?

MCMC Methods: No U-Turn Sampler (NUTS)

- new in ADMB 12 (released Dec., 2017)
- seems to have better sampling/coverage properties than MHRWM
 - better "burn in"
 - sampling more uncorrelated
 - faster
- R package "adnuts" generates multiple chains for ADMB model