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In designing and performing surveys of animal abundance, monitoring programs often struggle to determine the sampling intensity and de-
sign required to achieve their objectives, and this problem greatly increases in complexity for multispecies surveys with inherent trade-offs
among species. To address these issues, we conducted a multispecies stratified random survey design optimization using a spatiotemporal
operating model and a genetic algorithm that optimizes both the stratification (defined by depth and longitude) and the minimum optimal
allocation of samples across strata subject to prespecified precision limits. Surveys were then simulated under those optimized designs and
performance was evaluated by calculating the precision and accuracy of a resulting design-based abundance index. We applied this framework
to a multispecies fishery-independent bottom trawl survey in the Gulf of Alaska, USA. Incorporating only spatial variation in the optimization
failed to produce population estimates within the prespecified precision constraints, whereas including additional spatiotemporal variation
ensured that estimates were both unbiased and within prespecified precision constraints. In general, results were not sensitive to the number
of strata in the optimized solutions. This optimization approach provides an objective quantitative framework for designing new, or improv-
ing existing, survey designs for many different ecosystems.
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Introduction
Productive and sustainable fisheries provide socio-economic

opportunities and ensure food and nutritional security. In the

United States, commercial wild-capture fisheries totalled 4.3 mil-

lion metric tons valued at $5.6 billion in 2018 (NMFS, 2020).

Fisheries stock assessments provide the basis for managing these

fisheries. Fishery-independent surveys are often the primary

source of inputs for stock assessment models, providing informa-

tion on the abundance and composition of fish populations.

Thus, properly designed fisheries surveys are integral to ensuring

that the most scientifically robust data products are used for fish-

eries management (Smith and Hubley, 2014; Zimmermann and

Enberg 2016; Muradian et al. 2019). Survey data are also used to

address a variety of research questions including species distribu-

tions over time (e.g. Thorson et al., 2015) and ecosystem status

indicators through environmental data collection (e.g. de Boois,

2019; Zador et al., 2019).

Accuracy and precision are the main quality metrics of a

fisheries survey and are constrained by total sampling effort and

budget. The precision of a survey, described as either a variance

or a coefficient of variation (CV), is an important survey output

commonly used for survey comparison studies (Overholtz et al.,

2006), evaluations of survey output quality (Cao et al., 2014), and

stock assessments (Francis, 2011). That said, fisheries surveys

need to be flexible to many sources of logistical constraints and

uncertainties while still maximizing the objectives of producing

survey products with high accuracy and precision. Unavoidable

survey effort reduction due to budgetary constraints, inclement

weather, or vessel breakdowns pose serious implications to the re-

liability of fisheries surveys (ICES, 2020). Reductions in survey
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effort through a reduction in sampling intensity or frequency can

compromise the precision and bias of abundance indices (von

Szalay, 2015; Hutniczak et al., 2019; ICES, 2020). Additionally,

fishery-specific constraints like gear type, coverage rate, and vessel

type are other additional considerations when optimizing survey

design (Miller et al., 2007). Given the high operating costs of

fisheries-independent surveys and that these changes typically oc-

cur at timescales that leave little time for planning and quantita-

tive evaluation, there is a need for rapid survey optimization tools

to guide survey changes within a flexible framework.

The multispecies nature of many surveys means that invari-

ably, there are interspecific trade-offs in designing a survey that

optimizes over many species (and possibly life stages within spe-

cies) with different spatiotemporal distributions and varying lev-

els of directed targeting (Smith et al., 2011; Wang et al., 2018).

The magnitude of variance in species abundance across space

and/or time affects the optimal spatial extent and frequency of

surveys (Rhodes and Jonzén, 2011; Lanthier et al., 2013). In some

cases, there may be temporary needs for increased precision for

certain species and/or regions (e.g. when a stock is close to a limit

threshold or displays sudden declines in abundance; Barbeaux

et al., 2018; Laurel and Rogers, 2020). Further, trade-offs in sur-

vey design strategies can occur among data uses, for example in-

dices of abundance, compositional data, species distribution

shifts, and population responses to marine reserve implementa-

tion (Miller et al., 2007; Smith et al. 2011). Thus, the evaluation

of the effects of changes in total survey effort needs to also con-

sider trade-offs of quality metrics among species.

To illustrate the development of a fishery survey design opti-

mization framework while addressing the above challenges related

to survey effort reduction and trade-offs among species, we fo-

cused on a case study involving the Gulf of Alaska (GoA) ground-

fish stratified random bottom trawl survey (BTS). With a

relatively long time series (nearly 40 years in this case) of data on

the distribution of these species, both spatiotemporal variability

and/or species covariation can be incorporated into a more goal-

driven and objective survey design optimization (e.g. Peel et al.,

2013). The stratified survey optimization was conducted using a

genetic algorithm that optimizes both the stratification of the spa-

tial domain as to minimize total sample size subject to prespeci-

fied precision constraints for a given number of strata. We used a

previously built multispecies spatiotemporal fish density distribu-

tion model as data inputs to the optimization. Surveys were then

simulated under those optimized survey designs and the precision

and bias of the population estimates were calculated as perfor-

mance metrics. This framework for optimizing a stratified ran-

dom survey design for estimating abundance with respect to a

model-generated spatiotemporal distribution can be used to eval-

uate the multispecies trade-offs of varying sampling intensities on

the quality of fisheries survey estimates.

Methods
The framework of the optimization is presented in Figure 1.

Section 2.1 is a brief overview of the multispecies spatiotemporal

operating model (OM), from which predicted densities are used

as data inputs to the survey optimization algorithm. The optimi-

zation problem is defined in Section 2.2 and the algorithm used

to solve the optimization problem is described in Section 2.3.

Section 2.4 describes how the survey optimization is conducted

in the GoA and Section 2.5 describes the simulation of those opti-

mized survey designs against the OM and the resulting

performance metrics. The associated code can be found on the

corresponding author’s GitHub page (https://github.com/zoya

fuso-NOAA/Optimal_Allocation_GoA_Manuscript).

Three types of CVs are defined in the following sections with

slightly different interpretations and uses in this framework. In

Sections 2.2–2.4, CVs that incorporate variability in density across

the domain and observed years for each species from the OM de-

scribed in Section 2.1 are used as prespecified precision constraints

of to guide the optimization of a new multispecies stratified survey

design. These CVs utilize population-level stratum variance statistics

that integrate the many sources of process variability as specified in

the OM in Section 2.1 with the exception of additional sources of

measurement error. These CV constraints can be interpreted as the

expectation of the sample CV for a given level of survey effort. The

survey simulation in Section 2.5 is important in establishing preci-

sion levels more consistent with what would be observed in the sam-

pling process. Within a simulation framework, the second CV

defined in Section 2.5 describes the variability of an abundance index

across many simulated surveys relative to the true index, interpreted

as the realized or “true” sampling CV (Kotwicki and Ono, 2019), a

metric impossible to calculate when analyzing actual surveys. The

sample CV is the third type of CV used in this analysis and refers to

the CV associated with the abundance index calculated for one repli-

cate survey. Unlike the CV constraints, these CV utilize sample-level

statistics of stratum variance and are year-specific. The congruence

of these sample CVs to the realized true CV is a performance metric

defined in Section 2.5.

Operating model
To serve as an OM, we fitted a multispecies spatiotemporal distri-

bution model using a vector-autoregressive spatiotemporal model

(VAST; Thorson and Barnett, 2017). Readers are referred to the

Supplementary S1 for more detail on the VAST OM, but a brief

description of the relevant outputs follows. We fitted the VAST

model to catch-per-unit-effort data of GoA groundfishes col-

lected from a fishery-independent BTS using a stratified random

sampling design (von Szalay and Raring, 2018). We restricted the

input data to the years 1996, 1999, and every other year from

2003 to 2019 to ensure consistency in sampling design and species

identification (11 observed data years). Fourteen species and one

species group were included to represent the groundfish complex

in the GoA, based on commercial value and the dependence of

stock assessment models on survey-derived abundance indices:

Atheresthes stomias, Gadus chalcogrammus, G. macrocephalus,

Glyptocephalus zachirus, Hippoglossoides elassodon, Hippoglossus

stenolepis, Lepidopsetta bilineata, L. polyxystra, Limanda aspera,

Microstomus pacificus, Sebastes alutus, S. polyspinis, S. variabilis,

and Sebastolobus alascanus. Due to identification issues between

two rockfishes, Sebastes melanostictus and S. aleutianus, the

catches of these two species were combined into a species group

(Sebastes spp.) we will refer to as “Sebastes B_R” (blackspotted

rockfish and rougheye rockfish, respectively) hereafter.

The density (ygit) of each species or species group was pre-

dicted onto the GoA survey spatial domain at a resolution of 3.7

by 3.7 km (i : 1; 2; . . . ; N ¼ 23 339 cells; some prediction grid

cells had smaller area due to intersections with survey domain

boundaries) for each species (g : 1; 2; . . . ; G ¼ 15 species) and

observed year (t : 1; 2; . . . ;T ¼ 11 observed years). Figure 2

shows the average spatial distribution over time for each species.

These predictions were taken to represent true densities values,

which were used to generate optimal survey designs and evaluate

2 Z. S. Oyafuso et al.
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Figure 2. Predicted mean density across years (kg km�2) for each species included in the survey optimization across the GoA. Bottom right
panel shows the bathymetry within the survey footprint along with the 200 m isobath, which is a general delineation of species distributions.
Refer to the Supplementary S1 for a brief explanation of the OM used to produce these predicted densities and Supplementary S2 for
predicted densities by year.

Figure 1. Flowchart of the multispecies stratified survey optimization.
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the performance of simulated surveys given those designs. As the

primary measure of survey performance is the accuracy and pre-

cision of the total abundance estimate, we define this by the proxy

of mean density.

Survey optimization problem
The goal of the multispecies stratified survey design optimization

is to jointly optimize the stratification and the sample allocation

across strata (h : 1; 2; . . . H) by finding that which minimizes

total sample size, subject to prespecified precision constraints for

each species. Specifically, the objective function is to minimize

total sample size subject to G prespecified CV constraints

(U1; U2; . . . ; UG):

min
XH

h¼1

nh; (1)

s:t:
CVðY1Þ < U1

� � �
(2)

CVðYGÞ < UG;

CV Ygð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðYg Þ

p
Yg

;
(3)

VarðYg Þ ¼
XH

h¼1

Nh

N

� �2 S2
h;g

nh

1� nh

Nh

� �
; (4)

where nh and Nh are the sample sizes and number of sampling

units in stratum h, respectively. By leveraging density predictions

provided by the OM, this optimization is specified using

population-level statistics. Yg is the population mean of species g

averaged over the cells in the spatial domain and over observed

years. VarðYg Þ in Equation (4) is the stratified random sampling

variance associated with the population mean. Careful consider-

ation is needed for this variance, specifically the stratum variance

S2
h;g , defined in Equation (4). The OM provides predicted

densities across all cells and observed years for each species and

integrates many sources of variation including temporal (year-to-

year), habitat covariates (depth), species covariation, and addi-

tional spatial and spatiotemporal variation. A common issue in

survey design optimization is how to integrate data from previous

surveys (Francis, 2006), thus we investigated two types of stratum

variances that incorporated the OM-derived densities predicted

across the observed survey years in the GoA BTS:

(1) Spatial-only stratum variance: The first method was to re-

duce the temporal dimension by averaging the predicted

densities from the OM over the observed years for each cell

in the spatial domain. In this “spatial-only” optimization,

S2
h;g is the population stratum variance of density for species

g in stratum h:

S2
hg ¼

1

Nh � 1

XNh

i¼1
ygi� � yhgð Þ2; 5ð Þ

where yhg is the population mean density estimate of species g

averaged across all observed years and cells contained within stra-

tum h, and ygi� is the predicted density of species g in cell i (where

cell i is in stratum h) averaged across observed years. Note the use

of the Nh term in Equation (5) denotes a population-level stratum

variance.

(2) Spatiotemporal stratum variance: A potential issue with

the spatial-only version of the population stratum variance is

underestimating the total “known” variability within a stra-

tum by averaging over the year-to-year as well as spatiotem-

poral variation explicitly modelled in the OM. Thus, for this

“spatiotemporal” optimization, the population-level stratum

variance in Equation (5) was modified to incorporate both

within-stratum (note the summation range between i ¼ 1 to

Nh) and within-grid cell density variation across years (note

the summation range between t ¼ 1 and T):

S2
hg ¼

1

TNh � 1

XT

t¼1

XNh

i¼1
ygit � yhgð Þ2 (6)

Optimization of strata boundaries and sample allocation
Comprehensive brute-force searches for the optimum stratifica-

tion of the spatial domain, and optimum allocation of samples

are usually intractable for moderately sized problems. Thus, we

searched for optimal stratifications and survey effort allocations

via a genetic algorithm using the R package SamplingStrata

(Ballin and Barcaroli, 2013; Barcaroli, 2014). The genetic algo-

rithm uses evolutionary principles such as fitness-based selection,

recombination, and mutation to iteratively search for an optimal

stratification and sample allocation. Below, we provide a brief

description of the algorithm and settings used but readers are

referred to Ballin and Barcaroli (2013) for more technical details.

The optimization initializes with 30 random stratifications (a

prespecified number of candidate solutions) based on two auxil-

iary variables, bottom depth (m), and longitude (eastings, km)

for a user-defined number of strata. Here, we explore results from

5 to 60 strata to determine how the number of strata influences

the precision of the abundance estimate. In the GoA, gradients

across both depth and location have been observed to describe

major patterns in demersal species composition (Mueter and

Norcross, 2002). Longitude was used as a one-dimensional east-

west location proxy. For each candidate solution, the Bethel algo-

rithm (Bethel, 1989) is used to optimize the allocation of the

minimum sample size across strata, subject to Equations (1) and

(2). Fitness is defined as the resultant sample size from the Bethel

algorithm, with solutions with lower sample sizes having higher

fitness. Elitism occurs by taking the solutions with highest fitness

(defined a priori to be solutions in the top tenth percentile for

smallest sample size) and automatically advancing them to the

next iteration of the algorithm. In the next iteration, the remain-

ing solutions are selected with probability proportional to their

fitness values to “procreate” a new solution by applying a cross-

over of the solutions. Random changes in the stratifications, or

mutations, are then applied at a given rate to the resultant solu-

tion. The mutation rate defines how often random changes to the

solutions occur and was tuned to 1=ð1þHÞ based on previous

tuning guidelines (G. Barcaroli, personal communication) to

reach reasonable convergence times. The process of procreation

occurs until 30 candidate solutions are included in the next itera-

tion of the algorithm. The algorithm is conducted for a total of

200 iterations, a value (along with the choice of 30 candidate sol-

utions) chosen to ensure that, at least qualitatively, the algorithm
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reached an asymptotically optimal solution within a reasonable

amount of computation time (see Supplementary S3 for an exam-

ple of the algorithm output).

Optimization schemes
In the GoA, total sampling effort is primarily determined by how

many boats are available to conduct the survey, with all vessels

operating for the same duration of time. These levels of sampling

intensity correspond to approximately: 280 samples (one boat),

550 (two boats), and 820 (three boats) (von Szalay et al., 2010;

von Szalay and Raring, 2018). Thus, we focused on optimized

survey designs under these three sample size scenarios for a given

number of strata. The optimization does not maximize precision

constrained by a total sample size, thus we needed to set the CV

constraints [Equation (2)] for each species to meet the three sam-

ple size scenarios regardless of which version of the stratum vari-

ance [spatial-only or spatiotemporal, Equation (5) or (6),

respectively] is used. We implemented this systematically using

two sets of rules depending on whether the CV constraint was

constant or varying among species:

(1) One-CV constraint scenario: CV constraints were set to the

same value across species. Initially, the CV constraint was set

to some arbitrarily high value (e.g. 0.30) and the optimiza-

tion was conducted to produce the optimal stratification

and total sample size. Then, the CV constraint is incremen-

tally decreased (e.g. 0.30–0.29) and the optimization was

conducted again. By gradually decreasing the CV constraint,

the optimized sample size slowly increases. This increment

was chosen to be small enough to balance having adequate

coverage over the three boat-effort scenarios (n ¼ 280, 550,

820 stations) within a reasonable total computation time.

This process was iterated until the range of considered sam-

ple sizes was captured (i.e. until the optimized sample size

was �820).

(2) Species-specific CV constraint scenario: CV constraints

were allowed to differ across species. Similar to the one-CV

constraint scenario, the CV constraint was initialized to be

the same across species at some arbitrarily high value (e.g.

0.30). The optimization was conducted, and the optimized

CVs across species (i.e. CV Y1ð Þ; CV Y2ð Þ; . . . ; CV YGð Þ)
were saved from the optimization. The CV constraints for

the next instantiation were calculated by reducing the opti-

mized CVs in the previous run by some proportional incre-

ment (e.g. 5%) for each species. Similar to the one-CV

method, this process was iterated until the range of the three

boat-effort scenarios was captured.

Simulation of data collection
For each combination of strata number and sample size scenario,

the optimized survey was simulated D¼ 1000 times. rdgt is the

stratified random sample estimate of mean density of species g at

time t for simulated survey d. CVðrdgt Þ is the CV of the survey

estimate and is similar to Equations (3) and (4) except using the

sample stratum variance instead of the population stratum vari-

ance. To evaluate the precision and accuracy of the abundance

estimates resulting from simulated surveys, we calculated the

following performance metrics for each species.

Since our procedure does not optimize sample CVs directly,

we evaluated the expected effect of a survey optimized with

respect to population CVs on performance metrics of the sample

CVs derived from simulated surveys. The true CV, CVTRUEðYgt Þ,
describes the precision of the mean density estimate of species g

at time t across replicate surveys and is the standard deviation of

the simulated survey estimates (where r�gt is the mean density es-

timate of species g at time t averaged across the D surveys)

relative to ygt , the true mean density of species g at time t:

CVTRUE Ygtð ÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD � 1Þ�1PD

d¼1 rdgt � r�gtð Þ2
q

Ygt

: (7)

Relative root mean square error of CV, RRMSEðCVðrdgt ÞÞ, is a

measure of uncertainty of the replicate sample CVs of species g at

time t and is a composite measure of the dispersion and bias of

the replicate sample CVs about the true CV:

PRMSEðCV ðrdgt ÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�1

XD

d¼1
ðCV ðrdgt Þ � CVTRUEðYgt ÞÞ2

q

D�1
XD

d¼1
CV ðrdgt Þ

(8)

Last, relative biases (RB) of the mean density and CV estimates

relative to their respective true values were calculated as follows:

RB rdgtð Þ ¼ 100%

PD
d¼1 rdgt � Ygtð Þ

DYgt

; (9)

RBðCV ðrdgt ÞÞ ¼ 100%

XD

d¼1
ðCV ðrdgt Þ � CVTRUEðYgtÞÞ

D CVTRUEðYgt Þ
(10)

Results
Optimal stratification
The optimization solutions with the closest sample sizes to each

of the three intended sample sizes were chosen as the representa-

tive solutions. Figure 3 shows those three representative solutions

along with examples of simulated survey stations for 5, 10, and 15

strata. The longitudinal variable was generally cut into the west,

central, and eastern parts of the spatial domain. Strata in the east-

ern part of the domain were often connected with the deeper

continental slope strata. Sampling density was concentrated in

the western and central parts of the spatial domain, with sparse

sampling in the eastern portion. Solutions across boat-effort sce-

narios within a strata number scenario were generally consistent

in the strata boundaries.

Trade-off between sample size and CV constraint
The spatial-only optimization led to one, two, and three boat sol-

utions with expected CV constraints of 0.19, 0.13, and 0.10, re-

spectively (Figure 4). These CV constraints are from the one-CV

constraint approach, meaning these values represent the maxi-

mum expected sampling CV that any one species can exhibit. The

addition of spatiotemporal variability of the optimization in-

creased the CV constraints across boat-effort scenarios to 0.28,

0.21, and 0.17, respectively. For a given CV constraint, the addi-

tion of spatiotemporal variability required roughly two to three

times more samples in the optimal solution. Figure 4 shows the

relationship between sample size and CV for a five-strata scenario

Incorporating spatiotemporal variability in multispecies survey 5
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only, but this pattern was consistent across scenarios with differ-

ent numbers of strata (Supplementary S4).

Expected vs realized precision
True CV encompasses the variability of the mean density esti-

mates across realized survey replicates relative to the true mean

density and is different from the prespecified (expected) CV con-

straints used to constrain the survey optimization algorithm.

Simulation testing allows for the evaluation of the congruency of

the true CV across years to the CV constraint. Simulated surveys

under the spatial-only optimization failed to produce true CVs

lower than the CV constraint consistent across observed years for

some species (Figure 5). The medians of the true CVs across years

for Sebastes alutus, S. polyspinis, and S. variabilis were 25–50%

higher than the CV constraints specified in the optimization.

When spatiotemporal variability was included in the optimiza-

tion, all species were surveyed with true CVs lower than the CV

constraints for the majority, if not all, years observed. Further,

under the species-specific CV constraint scenario, all species were

surveyed with true CVs at or slightly below their respective CV

constraints. Additionally, the medians of the true CVs were much

closer to the expected CV than the one-CV constraint scenarios.

These patterns were consistent across scenarios with different

numbers of strata (Supplementary S5).

True CV across strata and sample sizes
Increasing sampling intensity reduced the true CV and the spread

of the bias of the mean density estimate across species and strata

Figure 3. Representative examples of strata boundary maps arising
from solutions for the species-specific CV constraint optimization
for 5, 10, and 15 strata across the three effort (boats) scenarios with
simulated stations randomly sampled according to each optimized
stratified survey superimposed. The colours represent different
strata.

Figure 4. Total optimized sample size (number of stations) across
CV constraint, accounting only for spatial variability (top) or both
spatial and temporal variability (bottom). The five-strata
optimization solutions are shown, but results were consistent across
strata (Supplementary S4). Both optimizations were conducted
under the one-CV constraint approach where all species have the
same CV constraint in the optimization. Horizontal dotted grey lines
indicate the sampling levels for one, two, and three boat-effort
scenarios.
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scenarios (Figures 6 and 7). Estimates of mean density across spe-

cies showed low bias (Figure 7), with slightly negative median

biases up to 5%. Increased samples across species led to further

reductions in bias and there were no noticeable differences in this

effect across number of strata. There were also no noticeable

trends in true CV across number of strata for either the one-CV

constraint (Supplementary S6) or species-specific CV constraint

optimizations (Figure 7).

RRMSE of CV across strata and sample sizes
The RRMSE of CV encompasses both the bias and variability

of the simulated sample CVs about the true CV. Similar to

true CV, increasing sampling reduced the uncertainty and

spread of the bias of the sample CV estimates across species

and strata scenarios with high consistency between both

optimization types (Figures 8 and 9). An exception was the

RRMSE of CV being higher for larger numbers of strata for a

handful of species (e.g. slope dwellers such as Sebastes B_R and

Sebastolobus alascanus) for the one-CV constraint optimiza-

tion (Figure 8). There was less of a noticeable trend across

strata in RRMSE of CV for the species-specific CV constraint

optimization than for the one-CV constraint optimization

(Supplementary S7). The species-specific CV constraint opti-

mization was more consistent in demonstrating the pattern of

lower true CV and RRMSE of CV with increasing sample sizes,

particularly with M. pacificus, Sebastolobus alascanus, Sebastes

B_R, L. bilineata, and L. polyxystra. Simulated sample CVs

were slightly negatively biased relative to their respective

true CV value with smaller magnitude and variability with

increasing sampling intensity (Figure 9), regardless of the

CV-constraint approach used.

Discussion
The inclusion of spatiotemporal variability in the population stra-

tum variance calculation [Equation (6)] led to CV constraints

that were within the distribution of the true or realized CVs of

abundance when surveys were simulated. These CV constraints

are equivalent to those the user defines initially in Equation (2),

thus the main goal of the survey simulation was to evaluate the

congruency between the expected CV constraints and realized

CVs in the form of the true CVs. In contrast, CV constraints us-

ing the spatial-only version of the population stratum variance

[Equation (5)] were not consistent with true CVs across species,

with true CVs for some of the more variable Sebastes species

vastly underestimated. The issue of including historical variation

in the survey data has been discussed in detail previously

(Francis, 2006), one complication being that incorporating year-

to-year variation in our OM may overestimate the within-

stratum variability. In fact, the trade-off of adding spatiotemporal

variation to the stratum variance calculation [Equation (6)] was a

two to three times increase in sample size for a given CV con-

straint (Figure 4), with many species’ distributions of true CV

lower than their respective CV constraints (Figure 5). However,

the consistency between the true CVs and their respective CV

constraints across species and years supports the use of this opti-

mization to provide robust and consistent indices of abundance.

Furthermore, future applications of this approach should also in-

tegrate within the optimization framework other important sour-

ces of observation error not included in this analysis, for example

measurement error, untrawlable areas, detectability (Field et al.,

2005), and sampling efficiency (Kotwicki and Ono, 2019), espe-

cially when realistically simulating surveys and assessing perfor-

mance. The exclusion of additional sampling error in our

Figure 5. Comparison of the relative difference between expected and realized CV of abundance. Specifically, this shows the distribution of
percent differences of the true CVs, calculated for each year, relative to the CV constraint associated with a five-strata, two boat-effort
scenario (n¼ 550) for all included species. The left and center plots show optimizations using the one-CV constraint approach. The right plot
shows an optimization using the species-specific CV constraint approach (refer to the main text for how CV constraints were specified across
species). For the species-specific CV constraint approach, a value of 0.10 was chosen as the lowest a population CV constraint could be
specified (indicated by the blue borders). A positive value indicates that the observed true CV is greater than the CV constraint that was
specified in the optimization. A negative or near-zero value indicates that the observed true CV is within the CV constraint specified in the
optimization. Results were qualitatively consistent with other total effort and strata scenarios.
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framework limits the absolute interpretability of the CV con-

straints and true CVs, thus these CVs could be treated as the “best

case” or lower limits of expected sampling CVs.

Specifying precisions constraints for each species is a clear ad-

vantage of this survey optimization framework and allows in-

creased flexibility for survey planners to meet desired goals in

their survey designs. When we initially used the one-CV con-

straint method to solve the optimization problem, there were

some inconsistencies in simulated true CV (Supplementary S6)

and RRMSE of CV (Figure 8) and sampling intensity for some

species. With the one-CV constraint approach, a single CV con-

straint is defined for all species, thus the CV constraint imposed

in the optimization is strict for some species and less so for

others, which can produce these inconsistent findings. The

species-specific CV constraint approach seemed to produce more

consistent positive trends in the performance metrics with in-

creasing sampling intensity by defining CV constraints for each

species individually. By setting constraints for each species

specifically and allowing the CV constraints to reduce propor-

tionally for each species, solutions performed more consistently

with increasing sampling intensity. Setting CV constraints for

each species also gives survey planners more flexibility to empha-

size or de-emphasize certain species within the optimization

more explicitly while evaluating the resulting trade-offs in preci-

sion for the other species. The CV constraint utilized in this opti-

mization was a maximum constraint but additionally, minimum

CV constraints can be also provided from stock assessment pro-

grams to provide additional constraints on the optimization. We

naively assumed in the species-specific CV approach that the CV

constraints need not be lower than 10%, but these values can be

based on different priorities for different species. Work is cur-

rently being done for that purpose in the GoA stock assessments

(ICES, 2020), based on how sampling precision affects uncer-

tainty of assessment outputs such as estimated biomass.

Ultimately, a cost–benefit analysis evaluating the relationship be-

tween total sampling effort, precision, and downstream

Figure 6. Distribution of true CV across observed years for each species, level of sampling effort (colour), and number of strata for the
species-specific CV constraint approach.
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management quantities like total allowable catch can more di-

rectly link the multispecies trade-offs of surveys on the economic

value of fisheries (Francis, 2006).

While there are many approaches to optimizing survey design,

the framework introduced provides a new approach to optimize a

survey design that is particularly advantageous for estimating

animal abundance time series. Previous simulation studies have

shown that reductions in precision from lowered sampling can be

alleviated by choosing a more optimal stratification scheme (Xu

et al., 2015). Peel et al. (2013) developed a survey optimization

based on a multispecies model-based (Generalized Additive

Model) survey design. With the increasing usage of model-based

Figure 7. Distribution of percent relative bias in the simulated mean density estimates across years relative the true mean density for each
species, level of sampling effort (colour), and two strata levels (15 and 60 to represent the range investigated) for the species-specific CV
constraint approach. Results were similar for the one-CV constraint approach (Supplementary S8).
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spatiotemporal methods to develop indices of abundance

(Thorson et al., 2015, 2017; Thorson and Barnett, 2017), it is be-

coming more relevant to develop formalized survey design opti-

mizations in tandem with these model-based estimation

methods. Other weighted multiple-criterion optimizations of

stratified surveys focused on optimizing over additional data

types like compositional and bycatch data (Miller et al., 2007).

With emerging OMs like those presented in the SimSurvey R

package (Regular et al., 2020), age and spatially explicit OMs are

becoming more accessible to incorporate other data types in a

survey optimization.

The framework that we present can be used as a tool for long-

term decision support for improving current surveys and result-

ing survey data products such as abundance indices and age or

size composition estimates. For example, modifying the current

stratified survey design in the GoA is a long-term process that

will involve rigorous review and operational modifications over

multiple years. Fortunately, the switch to a more efficient survey

design would not require calibration, as the change would be be-

tween two stratified random designs that are inherently unbiased.

Work is currently ongoing to compare the performance of this

survey design framework vs. the current GoA survey design via

simulation testing. Currently, the GoA BTS uses a stratified ran-

dom design with 59 strata defined by bathymetry, bottom terrain,

and statistical reporting designations (von Szalay and Raring,

2018). While upwards of 60 strata are not inherently too many

strata, the delineations of the strata boundaries were subjectively

chosen during a time where less information was known about

the demersal species set. Furthermore, the existence of such nu-

merous strata can cause problems computing sample-level stra-

tum variances, as some strata can become undersampled to the

extent that it is impossible to estimate a variance or variances are

estimated with uncertainty too high to provide meaningful abun-

dance estimates. From these preliminary results on the GoA sur-

vey design, an unbiased survey design can be optimized with less

strata than used currently (e.g. 10–20 strata instead of 55–59).

Integral to potentially changing the survey design in the GoA is

understanding the current performance and trade-offs of the pre-

sent survey design. Metrics such as true CV, relative bias, and

RRMSE of CV can be used to show any deficiencies in the current

design and how to improve future survey designs and sampling

allocations. The uncertainty associated with the sample CVs is re-

lated to its reliability as a data weight in some stock assessments

(Francis, 2011) but is often overlooked in fisheries science despite

such estimates themselves often being highly uncertain (Kotwicki

and Ono, 2019). The slight negative bias in the sample CVs rela-

tive to the true CV, especially for highly variable species (Sebastes

spp., Figures 8 and 9), contributed to the magnitude of the

RRMSE of CV, and was expected given the patchy nature of these

species’ distributions. It is key to emphasize temporal variability

Figure 8. Distribution of RRMSE of the CV across observed years for a subset of species (see Supplementary S7 for a full version), level of
sampling effort (colour), and number of strata for the one-CV constraint approach (left set of plots) and species-specific CV constraint
approach (right set of plots).
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in both the estimates and their associated uncertainties when

evaluating and planning reliable and quality surveys.

These solutions are intended to objectively guide future survey

designs we expect that the actual boundaries of the strata would

be further modified based on expert opinion, logistical aspects of

the survey operation, or other information sources prior to im-

plementation. For example the way the optimization partitioned

depth and longitude resulted in unnatural longitudinal cuts that

split islands, bays, and inlets. If this produces features that do not

seem consistent with other data or knowledge of the system, other

variables could be used to determine stratification and additional

fine-scale habitat features could be incorporated as covariates in

the OM. Post-hoc, the shapes of the strata may also be changed

to increase the feasibility and representation of the design. For ex-

ample some GoA groundfishes are managed within either three

management areas or five management districts that roughly di-

vide the domain into western/central/eastern areas. Work is cur-

rently ongoing to evaluate the effects of including these

management strata either into the optimization as a separate

stratum variable, conducting the optimization separately in each

management strata, or through some poststratification process.

Survey teams may also be interested in the average distance

among stations produced by optimal allocation, as logistical chal-

lenges may prevent certain parts of the spatial domain to be sur-

veyed in a cost-efficient manner. For example in the current GoA

BTS, one- and two-boat allocations currently do not sample the

deepest strata due to time constraints. Survey design optimization

packages like the SamplingStrata package (Barcaroli, 2014) can

also incorporate survey costs with respect to survey duration per

station or distance from port or limit the spatial domain to feasi-

ble depth ranges and trawlable (i.e. accessible) areas. The advan-

tage of this systematic approach is that these modifications can be

evaluated in a reproducible and transparent way to document the

survey design process.

In addition to redesigning the stratification and sample alloca-

tion of existing surveys, the framework presented here could also

be used to design surveys in new regions or to optimize survey ef-

fort allocation within an existing stratification. However, applying

Figure 9. Distribution of percent relative bias in the simulated CV estimates across observed years relative the true CV for a subset of species
(see Supplementary S9 and S10 for a full version), level of sampling effort (colour), and two strata levels (15 and 60 to represent the range
investigated) for the species-specific CV constraint approach.
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this complete framework to optimize surveys may not always be

feasible given the requirement of thorough species distribution

modelling efforts to predict population density across the spatial

domain at the resolution of the sampling unit. Fortunately, the

optimization is a two-step process that first creates stratifications

and then applies a multivariable optimal allocation algorithm

(Bethel, 1989). Thus, in cases where a complete surface of density

predictions is not available, the Bethel algorithm can be used on

its own to provide optimal effort allocations, given prespecified

strata boundaries and historical strata-level sampling means and

variances. The framework of specifying CV constraints would be

similar to our approach but without the implementation of a ge-

netic algorithm to find optimal strata boundaries. For instance

we could have used the Bethel algorithm on the GoA survey ex-

ample with the 59 previously defined strata, where data inputs

would be the historical sample strata means and variances. This

reduced version of the optimization framework could be applied

as an intermediary approach, providing the time and additional

data needed to complete the species distribution modelling neces-

sary to perform the full optimization. Alternatively, survey plan-

ners could opt for one optimized stratified survey and adjust

allocations using the Bethel algorithm based on potential future

effort levels while making these new strata boundaries constant.

We do not explicitly recommend that the stratification be

changed between times with different sampling effort. However,

if such changes were implemented, the survey time series would

still be easily interpretable as we expect all stratified random sam-

pling designs to produce unbiased estimates.

By leveraging the nearly 25-year time series of survey data, we

can both incorporate the observed spatiotemporal variation to in-

form the design of the survey to meet a desired level of precision

and continue to do so as data accrue over time. The updating of

information over time reflects a major advantage of a survey de-

sign that can improve over time, and this framework is one way

to provide an explicit but flexible framework for that process.

That said, survey teams often have to contend with environmen-

tal changes that may cause species distributions to shift from their

previously predicted distributions (e.g. Muhling et al., 2020).

Such distribution shifts can influence both the optimality of the

previous survey design and more fundamentally bias estimates

due to changes in catchability and spatial availability. Survey

designs can be flexibly optimized to account for environmental

information and then updated based on short-term environmen-

tal forecasts. This could be done through an extension of our

framework, by including the relevant dynamic environmental

covariates in the OM (e.g. Thorson, 2019). If such distribution

shifts are recent or ongoing, it may be prudent to conduct the op-

timization based on the predicted population densities in only

the most recent years (e.g. Ault et al., 1999).

Fisheries-independent surveys provide the foundation for sci-

entifically sound fisheries management, thus the design of those

surveys should be optimized for multiple scientific objectives.

Using a heuristic approach, we designed a stratified survey design

optimization that meets the objectives of producing precise abun-

dance indices with minimal sampling intensity for multiple spe-

cies. Major advantages of this approach are its explicit objectives

of optimality and maximal precision, flexibility of inputs and

constraints, and ability to communicate the expected impacts on

the data products for downstream analyses. Systematically opti-

mized survey designs can quickly accommodate rapid modifica-

tions in sample size or species prioritization that often arise as

conditions change before or during a survey. The framework out-

lined here can be modified to incorporate different operational

constraints (e.g. total sample sizes, inaccessible sampling units,

and more detailed costs of sampling), species sets and species-

specific precision constraints, and data inputs. Given the preva-

lence of multispecies surveys in fisheries and wildlife management

among other applications, we hope that future survey design re-

search will use and extend this approach for multispecies survey

optimization to better balance objectives and further explore the

trade-offs inherent with surveying species with differing distribu-

tions of abundance.

Supplementary material
Supplementary material is available at ICESJMS online version of

the manuscript.
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