Using nonstationary stock assessment models to diagnose meaningful ecosystem indicators

Yan Jiao, Virginia Tech, yjiao@vt.edu
Collaborators:
Don Orth, Virginia Tech
Rob O'Reilly, Virginia Marine Resources Commission
Eric Smith, Virginia Tech

Background

- Rationale of nonstationarity in spatial and temporal dynamics
- Species interaction (example weakfish related studies ASMFC 2006; NEFSC 2009)
- Environmental impact
- Intrinsic biological processes
- A strategy of ecosystem considerations ~ unclear driving factors or inconsistent correlations
- Inconsistent abundance indices in trends
- Likely changed population productivity, key life-history processes, and spatial distribution
- Challenges in using nonstationary stock assessment models for management purposes

Outline

Atlantic weakfish fishery

Data

- Catch (recreational + commercial + discarding)
- Relative abundance indices
- Age 1+ (age structured; 6 by 2007 and 8 in 2019)
- YOY (7 age 0 indices in year t, used to calibrate age 1 in year $t+1$)

Data - Catch

Data - relative abundance indices

Data - relative abundance indices

Data - relative abundance indices

Relative abundance indices correlations (after standardization)

NMFS	MRFSS	SEAMAP	RI	NJ	DE	MD	NC
1	-0.117	0.201	0.212	0.139	0.179	-0.254	-0.716
	1	-0.383	-0.091	0.321	0.688	0.074	0.495
		1	0.152	-0.053	-0.159	-0.195	0.153
			1	0.293	0.213	-0.158	0.180
					1	0.259	-0.172

Nonstationary population dynamics

- How to reflect/model nonstationary dynamics in age structured models?

SCA models to start

Need to develop new nonstationary models which can test the hypotheses of nonstationary spatial dynamics? Also changes in M

$$
\begin{aligned}
& \operatorname{Ln}\left(N_{a+1, y+1}\right)=\operatorname{Ln}\left(N_{a, y} e^{-F_{a, y}-M}\right. \\
& \operatorname{Ln}\left(C_{a, y}\right)=\operatorname{Ln}\left[\frac{F_{a, y}}{F_{a, y}+M} N_{a, y}\left(1-e^{-F_{a, y}-M}\right)\right]+\varepsilon_{C} \\
& F_{a, y}=F_{y} S_{a} \\
& \operatorname{Ln}\left(I_{j, a, y}\right)=\operatorname{Ln}\left(q_{j, a} N_{a, y}\right)+\varepsilon_{j, 1} \\
& N_{a=1, y}=R_{y}
\end{aligned}
$$

New models to test spatial asynchrony hypotheses

Models on spatial nonstationarity

M1	Statistical catch-at-age model (SCA) \{Assume surveys are independent and represent population trend\}
M2S	A random effect SCA model (RSCA) \{Assume survey areas as random factors\}
M3S	A Conditional Autoregressive (CAR) SCA model (CARSCA) \{Assume neighboring areas have similar trends and influence each other\}
M4S	A spatial hierarchical SCA model with variance a function of the distance (SHSCA) \{Assume trends of all the areas are correlated, with the correlation larger if the distance closer \}

Jiao et al 2016.

New models to test M hypotheses

Models on M temporal changes

```
M1 SCA with constant known M
```

M2M SCA with M unknown with white noise

M3M SCA with age-specific M unknown with white noise
M4M SCA with M_{y} unknown and follow random walk process
M5M SCA with age-specific M unknown and follow random walk process
Jiao et al 2012.

Method - models

1. Statistical catch-at-age model (SCA) with natural mortality (M) fixed, and all survey indices (Is) independent and proportional to total population size (N) (M1);
2. SCA with M changing over time and following a random walk process ($\mathrm{M} 2=\mathrm{M} 4 \mathrm{M}$);
3. SCA with M fixed, but Is represent spatial asynchrony of the population distribution ($\mathrm{M} 3=\mathrm{M} 2 \mathrm{~S}$);
4. SCA model with M changing over time and following a random walk process, and Is represent spatial asynchrony of the population distribution (M4 = hybrid of M4M and M2S).

* SCA with M changing over time and estimated through a change point models (M2C);
* SCA model with M changing over time and estimated through a change point models, and Is represent spatial asynchrony of the population distribution (M4C).

References: Jiao et al. (2012; 2016) ICES J. Mar Sci. ASMFC 2015, 2019.

Estimation approach and model comparison

- Estimation approach
- Bayesian approach
- Model comparison and posterior model selection
- Deviance Information Criterion (DIC)
- Retrospective error
- Predictive ability
- Predictive probability
- The better the predictive ability the closer p_{a} value to 0.5

Results - M

Results - M

Models to change nonstationary models to stationary models

1. Include environmental factors in the models
2. Based on the pattern to recognize trends and shift

Background and Example fisheries
Models and estimators
Results and discussion

Results (spatial synchrony/asynchrony)

Results - (spatial synchrony/asynchrony)

Results (spatial synchrony/asynchrony)

Results (Environmental indicators)

Results (BRPs)

Background and Example fisheries
Models and estimators
Results and discussion

Results (posterior probabilities of the models)

Results (projection for management purposes)

Implications of this study

Incorporate spatial asynchrony reflected in different surveys is necessary for fisheries stock assessment
\square Nonstationarity can be important in stock assessment when considering the ecosystem effect

- We recommend nonstationary SCA models in stock assessment, at least testing such hypotheses
- Strategies should be considered when projecting population by changing the nonstationary models to stationary models if possible for management purposes

Implications of this study

For this case study:

Weakfish have asynchronous spatial dynamics

- less influenced by neighboring areas
- but rather than the unique geographic locations, such as Chesapeake Bay, Delaware Bay, inshore and offshore
- Can be linked to climate oscillation indices
\square The variation of M over time is supported by the data, and further found to be correlated with AMO
- How AMO and NAO inform M and spatial dynamics can be considered for future management purposes
- Pattern recognition can be considered/modeled when including nonstationary processes in the models

Acknowledgements

() Virginia Marine Resources Commission
() Atlantic States Marine Fisheries Commission
() USDA-Cooperative State Research, Education, and Extension Service (CSREES).
() Department of Fish and Wildlife Conservation, Virginia Tech
© Rob O'Reilly, Virginia Marine Resources Commission
() Jeff Brust, Pat Campfield, Lee Paramore, other SAS and TP members, ASMFC
() Students and postdoc: Josh Hatch, Qing He, Hao Yu, Andreas Winter

USDA

Questions?

