

Technical Guidance for Estimating Status Determination Reference Points and their Proxies in Accordance with the National Standard 1 Guidelines

Presentation to FMCs and SSCs

Richard Methot

2023

Status Update

Draft is ready for Council comments

Technical Guidance for Estimating Status Determination Reference Points and their Proxies in Accordance with the National Standard 1 Guidelines

Prepared for the

National Marine Fisheries Service

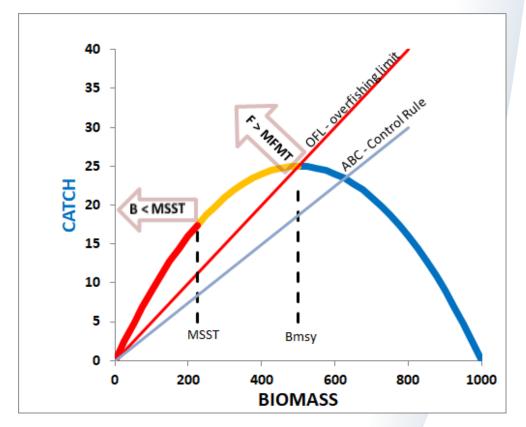
Ву

Richard Methot, Melissa A Karp, Jason Cope, Marc Nadon, Elizabeth N Brooks, Dan Goethel, Aaron Berger, Cody Szuwalski, Jon Brodziak, Shannon Calay, Stephanie Hunt, Deb Lambert, Timothy J Miller, Clay Porch, Chantel Wetzel, Kristan Blackhart, Karen E Greene, Marian Macpherson

U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service

NOAA Technical Memorandum NMFS-F/SPO-###

Overview of Document


- Approaches to calculating MSY-related quantities and SDCs
 - Tier 1: Age- or Length structured Assessment Models
 - Direct Estimation of FMSY, MSY, andBMSY
 - Proxies
 - Tier 2: Biomass Dynamics/Surplus Production Models
 - Tier 3: Data-limited Approaches
 - Biological Composition Method
 - Abundance-based Method
 - Catch-only Methods
 - Additional Special Considerations
- Multi-year approach to determine overfishing status
- Overfished and approaching an overfished condition
- Overfished Determination from %SPR approach
- Updating reference points and SDCs for changing conditions
- Multispecies Considerations

SDC Concepts

SDC Reference Points for overfishing and overfished conditions work together with Cor Rules to provide science-based fishery management

- Fishing mortality (F) ~ slope of line relating catch to biomass
- Higher F causes lower average stock BIOMASS
- Intermediate F gives MSY
- Overfishing occurs when F > Maximum Fishing Mortality Threshold (MFMT)
 - or when catch > Overfishing Limit (OFL)
- Stock is overfished when B < Minimum Stock Size Threshold (MSST)
- There is a F corresponding to MSST

Approaches to calculating MSY-related quantities and SDCs: <u>Age-structured methods</u>

Direct Estimation

- Choosing the SRR functional form and parameterization
- Estimating parameters of the SRR curve
- Using priors for one or more of the SRR parameters
- Regional differences have evolved tailored to local data and situation

Data-moderate MSY-based Proxies

- Proxies for Fmsy: recommended %SPR in range of 30-60%, with default of 40-45% for most stocks
- Proxies for Bmsy: Mean Recruitment x SSB/R @ Fproxy; %B@

Approaches to calculating MSY-related quantities and SDCs: <u>Biomass Dynamics</u>

Can be employed when there is:

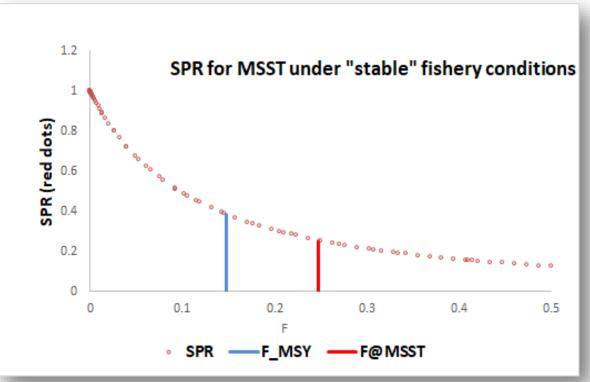
- (1) time series of total catch
- (2) at least one time series of relative abundance data

Pros

- minimal data requirements
- simple to implement and to communicate
- straightforward connection to MSY quantities

Cons

- cannot account for age-specific fisheries
- Ignores lag effect of recruitment contributing to the spawning biomass
- Cannot project recent recruitments into OFL and ABC


Approaches to calculating MSY-related quantities and SDCs: <u>Data-limited Methods</u>

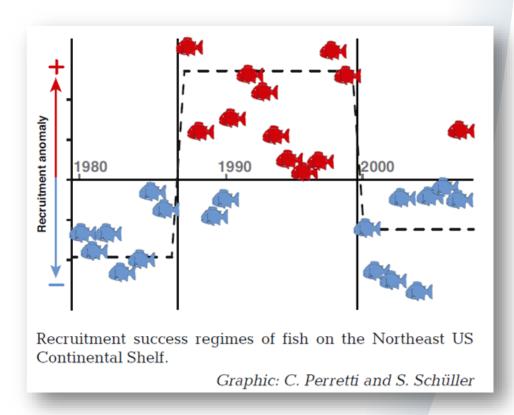
- Data-limited approaches include: catch-only, absolute abundance, abundance trend, and biological composition (e.g. %SPR) as data categories
- All rely on structural assumptions in order to infer <u>some</u> aspect of status determination; none can do it all

Approaches to calculating MSY-related quantities and SDCs: <u>Data-limited Methods</u>

- Biological composition data allow calculation of recent average SSB/R, from with the SPR can be calculated
- Previously NMFS has disallowed MSST status determinations from only %SPR calcs because it did not explicitly refer to biomass

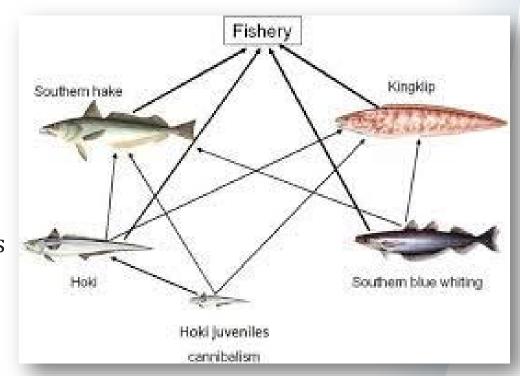
• Now: we demonstrate how assumption of quasi-stable stock and fishery provides logical basis by which %SPR, which is a measure of the impact of historical F on current stock's relative biomass, can be used to make MSST determinations

Additional Considerations for Reference Point Calculations


- Fleet dynamics
- Spatial complexity
- Size-selective fishing
- Density-dependence in other lifehistory factors beyond stockrecruitment
- Age-truncation
- Units of reproductive potential

Updating Ref Pts for Prevailing Conditions

- Track changes with empirical trailing averages
 - already routinely done for fishery conditions and fish biology
 - recommend extending that logic to recruitment also
- If environmental drivers are identified, explore ways to directly incorporate them in the assessment model and resultant SDC ref point updates
- Invoke regime shifts, when demonstrably necessary, as exceptions to that trailing average approach; with high bar to avoid explaining away fishing effects on SSB


Caution for Declining Stocks

- Highlight and investigate changing conditions that would lead to maintaining high F on a declining stock.
- Example: Increase in M causes stock decline, but also causes F40% to be a larger F
- Consider setting control rule inflection biomass based on long-term perspective, and setting FMSY, BMSY, MSY, and rebuilding target on the basis of more recently prevailing conditions. Such an approach needs simulation testing before being used.
- If using a %SPR for the proxy reference points, re-evaluate the choice of %SPR proxy used to ensure it is still consistent with the new perception of the stock's productivity

Multispecies Considerations

- Single Species approach not mandated, just convenient
- Should be doing best analysis possible to understand status of each species
- Technical interactions (e.g., mixed-stock fisheries)
 - System wide multispecies MSY (MMSY)
 - Calculate F associated with F_{MSST}, to ensure no stock is fished at level that would result in dropping below MSST in long-term
- Biological (ecological) interactions
 - Estimating predation mortality (M2)
 - Simultaneously estimating targets for multiple species
- Explore use of MSEs to evaluate tradeoffs

Conclusions

- This document strives to update technical guidance for implementation of reference points and status determinations under NS1
- Based on deliberations among knowledgeable experts that spanned several years
- It addresses some old and some new issues
- Highlight that despite the challenges and differences, the NS1G system of reference points has been highly effective in providing a scientific approach to implementation of the Magnuson-Stevens Act's mandate to prevent overfishing and rebuild overfished fisheries

Questions?

