Ecosystem & Socioeconomic Profile Overview and Update

Kalei Shotwell, Groundfish Plan Team, September 2023

ESP Definition: A standardized framework that facilitates the integration of ecosystem and socioeconomic factors within the stock assessment process and acts as a proving ground for use in management advice.

Process

Decisions

Report Summary

Stock	Year initiated	Full ESP	Partial update	Report card
Sablefish	2017	2017 - <u>2019</u>	<u>2020</u>	<u>2021, 2022</u>
Gulf of Alaska Pollock	2019	<u>2019</u>	<u>2020</u>	<u>2021, 2022</u>
EBS Pacific Cod	2020	<u>2021</u>		<u>2021, 2022</u>
GOA Pacific Cod	2020	<u>2021</u>		<u>2021, 2022</u>
St Matthew Blue King Crab	2019	<u>2019</u>	<u>2020</u>	<u>2022</u>
Bristol Bay Red King Crab	2020	<u>2020</u>		<u>2021, 2022, 2023</u>
Bering Sea Snow Crab	2021	2022		<u>2023</u>

Overview of ESPs for 2023, progress on importance methods, report streamlining

Next Year

Plans for 2024 ESPs, initiating Request For Information (RFI), data complexity advances, climate readiness alternatives

National

Developing National ESP Initiative including creating, sharing, synthesis workshops

Current (2023) ESPs

- ESP updates to Crab and Groundfish Plan Team (May, September)
 Report Card ESPs
 - Bristol Bay Red King and EBS Snow Crab in September
 - Sablefish, GOA pollock, GOA Pacific cod, and EBS Pacific cod in November
 - Only updated indicator data or minor changes (e.g., data updates to indicators, slight methods modifications, upgraded indicator)
- No full ESPs but testing climate readiness alternatives

Importance Methods Project

- Evaluating five different statistical methods (sablefish case study)
 - Bayesian adaptive sampling (BAS)
 - Boosted regression trees (BRT)
 - General additive models (GAMs)
 - Dynamic factor analysis (DFA) + robust regression
 - Structural equation modeling (SEM, trial run)
- Preliminary results presented at ESP workshops

Team: Oke, Shotwell, Siddon, Cunningham, Goethel, Arimitsu, Lunsford

Reproducibility Project

Developed <u>AKESP</u> R package

- Provided through GitHub
- Connects to AKFIN web service
- ESP database has all ESP indicators
- Standard set of graphics available (updating)
- Report templates in R Markdown (updating)
- Expanding for National ESP (in progress)

Team: Shotwell, Fedewa, Karp, Chan, Oakes, Griffis, AKFIN

Reproducibility Project

Stock Assessment & Status

- Bering Sea/Aleutian Islands and Gulf of Alaska stock with custom statistical catch-at-age model
- Benchmark assessment in 2016 included CIE recommendations to 1) account for whale depredation on the survey and fishery, and 2) propagate more structural uncertainty of management quantities.

Year	ABC	OFL	Total Biomass	B/ B_MSY	F/ F_MSY	Recruits (mill #s)	Total Catch	Ex-Value (mill \$)
2015	13,657	16,128	188,000	0.66	0.78	26.63	10,970	100.6
2016	11,795	13,397	170,000	0.63	0.78	163.65	10,257	98
2017	13,083	15,485	206,000	0.60	0.88	123.44	12,270	123.5
2018	14,957	29,507	515,000	0.59	0.77	12.47	14,341	93.7
2019	15,068	32,798	414,000	0.66	0.58	17.5	16,624	73.6

This stock is not subjected to overfishing, currently overfished, nor approaching an overfished condition.

Research Priorities

- 1) Evaluate apportionment strategies for ABC, use spatially explicit research model
- 2) Explore integration of ecosystem data to understand highly variable recruitment
- 3) Refine fishery abundance index, identify covariates that affect catch rates

Sablefish (Anoplopoma fimbria)

Data rich stock, high recruitment variability, rapid early life growth, shifting distribution, high value
 Indicators
 Score

- Presence of 2016 and 2019 year class in ADF&G survey, age 4 fish generally in poor condition, higher spatial overlap with arrowtooth in fishery, physical + but < from 2019, lower stable, upper slight >
- Incidental catch < in GOA, > in BSAI indicates expanding habitat, ex-vessel value and price/pound on recent decline, community analysis in progress

Research Model Performance (hypothetical)

Model	ABC	OFL	Cross Validation	Retrospective	Recruitment Comparison	SSB Comparison
SAFE	26,250	30,000	28% +/- 6%	+0.19	0.5	0.5
Eco	23,625	27,000	46% +/- 12%	+0.07	0.65	0.3

ESP: https://www.afsc.noaa.gov/REFM/Docs/IYEAR1/GOAsablefish.pdf. Contact: Kalei.Shotwell@noaa.gov

i i i i si cui

Overview of ESPs for 2023, progress on importance methods, report streamlining

Next Year

Plans for 2024 ESPs, initiating Request For Information (RFI), data complexity advances, climate readiness alternatives

National

Developing National ESP Initiative including creating, sharing, synthesis workshops

Future (2024) ESPs

Full ESPs

- Initiate EBS Tanner Crab ESP, present progress report in May (support?)
- Initiate EBS Pollock ESP, present progress report in September (support?)
- Potentially update full Sablefish ESP, present in September

Report Card ESPs

- St Matts blue king, Bristol Bay red king, and EBS snow crab in September
- Sablefish, GOA pollock, GOA Pacific cod, and EBS Pacific cod in November

Request For Information (RFI)

Four main elements (<u>example</u>)

- 1. **Description**: process, cycle
- 2. **Request**: bulleted list of requested information representing data gaps and research priorities by stock
- 3. **Contributions**: data fields and submission instructions
- 4. **Review and Responsibilities**: teams and contributor roles, use and credit

AKFIN Data Management Application

New ESP <u>Contribution Template</u>

#Ecosystem and Socioeconomic Profile (ESP) indicator contribution for stocks managed under the North Pacific Fisheries Management Council #This template is required for updating ESP indicator contribution information #There are two required sections to check or update (see below): Indicator Review and Indicator Data #Please fill in the text (surrounded by " ") or data as values in the line after each field marked with a # and capitalized name (e.g., #INDICATOR NAME, the next line should be the name of your indicator, for example "Annual Arrowtooth Biomass GOA Model") #Note that all fields are described in the Alaska ESP User Guide, please see [URL] for more details #INDICATOR REVIEW #SUBMISSION YEAR - Current year of contribution submission 2023 #INDICATOR NAME - Composite key (meaning this must be unique to the indicator) based on the ESP naming convention and used for joining ESP data tables. Please see email with your indicator names, and copy/paste name to this location. Note: this name must match the ESP records provided in the email, please do not change. Questions, contact kalei.shotwell@noaa.gov "Annual Arrowtooth Biomass GOA Model"

Climate Readiness

- 1. Focus: use climate vulnerability assessments to determine which stocks are priorities for conducting an ESP
- 2. Synthesize: identify thresholds and bottlenecks that may influence survival in a changing climate
- 3. Analyze: create projections using ocean models to make selected indicators climate informed
- 4. Communicate: include new graphics and measures in standard reporting template to convey climate readiness

Ecosystem Indicators

1.Marine heatwave index (model) 2.Bottom temperature (survey, **ROMS**) **3.SST**, wind stress, sea-ice (satellite) 4.Corrosivity or pH index (**ROMS-NPZ**) 5.Production (chlorophyll *a*, satellite) 6.Small/Large copepods (survey) 7.Euphausiids (survey) 8.Seabird reproductive success (survey) 9.Larval fish abundance, condition (survey) 10.YOY biomass, growth seabird diets (survey) 11. Juvenile CPUE, condition (survey) **12**. Juvenile predation mortality (model) 13. Proportion euphausiid in fish diet (survey) 14.Adult condition (survey, fishery) 15.Center of gravity, area occupied (model) 16.Predator biomass (stock assessment) 17.Steller sea lion non-pup estimates (survey)

Indicator Projections

Indicator Expansions

- Include different IPCC models and ensemble mean
- Evaluate over a range of emissions scenarios

Indicator Metrics

- Calculate moving mean to account for interannual variability
- Report at various future intervals (e.g., 5, 10, 50)

Additional Features

Courtesy: Kelly Kearney

20

Indicator Alternatives

- Include different indicator version based on ecosystem model
- Provide error estimates to allow for comparison of overlap
- Indicator Linkages
 - Estimates of time varying stock assessment parameters
 - Identify shifts in the indicator and other indicators to monitor

Indicator Alternatives

- Include different indicator version based on ecosystem model
- Provide error estimates to allow for comparison of overlap
- Indicator Linkages
 - Estimates of time varying stock assessment parameters
 - Identify shifts in the indicator and other indicators to monitor

Indicator Alternatives

- Include different indicator version based on ecosystem model
- Provide error estimates to allow for comparison of overlap
- Indicator Linkages
 - Estimates of time varying stock assessment parameters
 - Identify shifts in the indicator and other indicators to monitor

Indicator Alternatives

- Include different indicator version based on ecosystem model
- Provide error estimates to allow for comparison of overlap
- Indicator Linkages
 - Estimates of time varying stock assessment parameters
 - Identify shifts in the indicator and other indicators to monitor

I his tear	Т	his	Year
------------	---	-----	------

Overview of ESPs for 2023, progress on importance methods, report streamlining

Next Year

Plans for 2024 ESPs, initiating Request For Information (RFI), data complexity advances, climate readiness alternatives

National

Developing National ESP Initiative including creating, sharing, synthesis workshops

National ESP Progress

National ESP Initiative

National ESP Proposal (<u>CA/MSA 2023 RFP</u>)

- Series of focused workshops to develop ESP programs at different centers
- Special sessions at existing conferences to communicate ESP progress
- Working group to create and refine National ESP Initiative elements
- Workshops 2023 (<u>Share agenda</u>, <u>Co-creating agenda</u>)
 - Share (virtual): 80+, July workshop included reps from all centers, RO, HQ
 - Co-creating (hybrid): 30+ August workshop at PIFSC, coordinated with NEMoW
 - Synthesizing (hybrid?): 15+ working group, summarize previous workshops, ID common barriers, discuss support and future workshops

ESP Support

- 1. Forum: form a national working group to help connect programs and coordinate ESP development across centers
- 2. Metrics: develop a common set of measures to track ESP development and how indicators get used in management advice
- 3. Tools: data management options, R tools to speed up indicator analysis, modular code that can be adapted by regional needs, web services
- 4. Funding: coordinate across centers to leverage limited resources, advocate for within center ESP coordinators, connect with ESRs

Discussion

- Are there any changes to the ESP 2023 or 2024
 schedule that the GPT would like to make?
- 2) Are there any questions or changes regarding the future plans for ESPs (e.g., RFI, data/AKFIN, climate readiness)?
- 3) Are there any ideas or thoughts regarding support for ESPs at the AFSC?

Contact:

Kalei Shotwell, AFSC Kalei.Shotwell@noaa.gov

