

Eastern Bering Sea pollock stock assessment

December 2018 •

Seasonal and area catch patterns Eastern Bering Sea pollock

Year

Winter fishing

Cumulative pollock catch by month as proportion of TAC

Fishing: Seasonal roe production

Pollock "fatness" (given length) by month

Summer fishing conditions

Fishing conditions
B-season

Summer fishing conditions
B-season

What ages of pollock are caught?

- New 2017
catch-age data

Fishery
catch-at-age

Looking at weight-at-age

- 2008 year class generally small at age
- 2012 looks better!

- Average
fishery weight-at-age by season and year...

Pollock density and temperature

Source

- Bottom
- Surface
60°

Added survey stations in northern area...

Surveyed in 2010 and 2017

- Extra stations done in 2018 as an "emergency"

2010 standard survey
 (3.74 million t pollock estimated)

2018 standard survey
 (3.1 million t pollock estimated)

Modeling surveys

- To account for missed areas/years...
- VAST model of Thorson

Pollock distribution - Comparing with vs. without temperature

EBS pollock distribution Comparing with vs. without temperature

Preliminary conclusion
 Including temperature has relatively little impact on relative biomass in NBS vs. total

Courtesy Kerim Aydin and Jim Thorson

Pollock bottom trawl survey biomass trend

Year

Bottom trawl survey

What are the EBS pollock abundance-at-age estimates like?

- New 2018 abundance-at-age data from the bottom trawl survey

What are the EBS pollock abundance-at-age estimates like?

- New 2018 abundance-at-age data from the bottom trawl survey

Ag

Biennial mid-water acoustic-trawl survey

Acoustic

What are the EBS pollock abundance-at-age estimates like?

Acoustic Vessels of Oportunity

biomàss: YeAF
 鲁 pollock

Mid-water acoustic surveys...

Acoustic

Vessels of

 Oportunity
Acoustic vessels of opportunity (AVO)

Acoustic Vessels of Oportunity

Models

Data considerations

Name	Updated catch to 2018	2018 ATS data	2018 Bottom trawl data	AVO 2018
Catch	X			
+ATS	X	X		
+BTS	X	X	X	
+AVO	X	X	X	X

Data
 Impact on
 Model

EBS pollock Assessment Results

Model details (1 of 2)

- Tuning indices
- Acoustic Trawl survey
- Available biennially (usually)
- Annual fixed-station bottom trawl survey
- Tested including northern Bering Sea from VASt
- Acoustic vessel of opportunity (AVO index)
- Two new years of data every other year
- Old foreign trawler CPUE (in 1970s)
- Fishery data
- Total catch
- Catch-at-age
- Mean fishery weights-at-age

Model details (2 of 2)

- Age specific schedules
- Natural mortality
- Ages 1 and 2 higher, other ages fixed at 0.3
- Maturity
- Fixed, 50% at ~ age 3.5 years
- Other
- Conditioned on catch biomass (F's estimated)
- Selectivity varies in fishery
- Slightly in surveys
- Stock recruitment model Ricker, affects $A B C$ values, minimal impact on historical trends
- Projection options built in to evaluate policy trade offs

Alternative models for bottom-trawl survey
Results

Model
Fit 2018 survey estimates

- Include NBS

Model 16.1

EBS pollock
Assessment
Results

Bering Sea
 pollock

fishery
age data and fits
EBS pollock
Assessment
Results

Bering Sea

pollock
Bottom trawl survey age data and fits

Bering Sea pollock
 Acoustic survey age data and fits

Ebs pollock EBS pollock recruitment estimates
 Assessment

Results

Model
Model 16.1 last year
Model 16.1

EbS pollock
Assessment

Results

Selectivity.

Fishing mortality rates

Age 6 F (x10)

EBS pollock
 Retrospective
 Results

Year

2018 Stock recruitment evaluation

Female spawning biomass (kt)

EBS pollock
Assessment

Results

Indicator

- Age.Diversity
- Avg..age.SSB

Decision table diagnostics included

- Responds to SSC request for fixed future catch
- Relates to realistic future catches
- Allows comparisons with history
- Less reliance on things like stockrecruit relationship

Table 44: Outcomes of decision (expressed as chances out of 100) given different 2019 catches (first row, in kt). Note that for the 2017 and later year-classes average values were assumed. Constant F's based on the 2019 catches were used for subsequent years.

	10	500	1000	1250	1374	1500	1750	2000
$P\left[F_{2019}>F_{M S Y}\right]$	0.0	0.0	0.0	0.0	0.2	0.7	3.7	10.1
$P\left[B_{2020}<B_{M S Y}\right]$	13.3	17.7	23.9	27.7	29.8	32.1	37.2	42.8
$P\left[B_{2021}<B_{M S Y}\right]$	8.5	136	216	26.9	29.9	33.2	404	48.3
$P\left[B_{2020}<\bar{B}\right]$	1.4	8.8	30.2	45.6	53.5	61.5	75.5	86.0
$P\left[B_{2023}<\bar{B}\right]$	2.1	7.6	18.1	24.7	28.2	31.8	39.1	46.4
$P\left[B_{2023}<B_{2019}\right]$	6.9	16.9	30.8	38.1	41.7	45.2	51.8	57.8
$P\left[B_{2021}<B_{20 \%}\right]$	0.3	0.6	1.0	1.4	1.6	1.9	2.6	3.5
$P\left[p_{a_{5}, 2021}>\bar{p}_{a_{5}}\right]$	10.7	30.9	53.6	62.9	66.8	70.4	76.2	80.6
$P\left[D_{2020}<D_{1994}\right]$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$P\left[D_{2023}<D_{1994}\right]$	0.0	0.6	3.1	5.7	7.4	9.4	14.6	21.3
$P\left[E_{2019}>E_{2018}\right]$	0.0	0.0	3.8	41.7	63.7	79.4	93.8	98.1

	Considerations			
		Assessment-related	Population dynamics	Environmental \& ecosystem
	Level 1 Normal	Typical to moderately increased uncertainty \& minor unresolved issues in assessment	Stock trends are typical for the stock; recent recruitment is within normal range.	No apparent environmental \& ecosystem concerns
Factors for reducing	Level 2 Substantially increased concerns	Substantially increased assessment uncertainty unresolved issues.	Stock trends are unusual; abundance increasing or decreasing faster than has been seen recently, or recruitment pattern is atypical.	Some indicators showing an adverse signals but the pattern is inconsistent across all indicators.
$A B C$	Level 3 Major Concern	Major problems with the stock assessment, very poor fits to data, high level of uncertainty, strong retrospective bias.	Stock trends are highly unusual; very rapid changes in stock abundance, or highly atypical recruitment patterns.	Multiple indicators showing consistent adverse signals a) across the same trophic level, and/or b) up or down trophic levels (i.e., predators and prey of stock)
	Level 4 Extreme concern	Severe problems with the stock assessment, severe retrospective bias. Assessment considered unreliable.	Stock trends are unprecedented. More rapid changes in stock abundance than have ever been seen previously, or a very long stretch of poor recruitment compared to previous patterns.	Extreme anomalies in multiple ecosystem indicators that are highly likely to impact the stock. Potential for cascading effects on other ecosystem components

- Unprecedented warm conditions in 2018 resulted in reduced primary and secondary production
- The cold pool prediction for summer 2019 is for continued warm conditions and reduced cold pool extent
- Weak, delayed phytoplankton bloom, reduced biomass, and reduced energy transfer to upper trophic levels (i.e., zooplankton prey base and juvenile pollock)
- Zooplankton prey base reduced (small, lipid-poor taxa, few euphausiids)
- Adult pollock condition index is negative in both SEBS and NBS and has been trending downwards in SEBS since 2010.
- Unprecedented seabird die-off event and broad reproductive failures indicate, in part, a lack of sufficient prey resources

We therefore rated the Ecosystem concern as Level 2, substantially increased concern. These results are summarized as:

| Assessment-related | Considerations |
| :--- | :--- | :--- | :--- |
| Population dynamics | | \(\left.\begin{array}{lll}Environmental or

ecosystem\end{array} \quad $$
\begin{array}{l}\text { Score (max of } \\
\text { individual) }\end{array}
$$\right]\)

EBS pollock Assessment Results

Fishery effort relative to SSB impact

Projected trend relative to 2018 given future catch=1,350 kt

EBS pollock
Assessment

Results

EBS pollock summary

- Outlook
- Spawning biomass projected to decline from high levels
- Decision table may help with TAC considerations

85\% of Tier 1 maxABC

Quantity	As estimated or specified last year for:		As estimated or recommended this year for:	
	2018	2019	2019	2020
M (natural mortality rate, ages 3+)	0.3	0.3	0.3	0.3
Tier	1a	1a	1a	1 a
Projected total (age 3+) biomass (t)	10,965,000 t	10,117,000 t	9,110,000 t	8,156,000 t
Projected female spawning biomass (t)	$3,678,000 \mathrm{t}$	$3,365,000 \mathrm{t}$	$3,107,000 \mathrm{t}$	2,725,000 t
B_{0}	$5,394,000 \mathrm{t}$	$5,394,000 \mathrm{t}$	5,866,000 t	5,866,000 t
$B_{m s y}$	$2,042,000 \mathrm{t}$	$2,042,000 \mathrm{t}$	2,280,000 t	$2,280,000 \mathrm{t}$
$F_{O F L}$	0.621	0.621	0.645	0.645
$\max _{\text {ABC }}$	0.466	0.466	0.51	0.51
$F_{A B C}$	0.336	0.336	0.433	0.433
OFL	4,797,000 t	4,592,000 t	3,914,000 t	3,082,000 t
$\max A B C$	$3,603,000 \mathrm{t}$	$3,448,000 \mathrm{t}$	3,096,000 t	2,437,000 t
$A B C$	2,592,000 t	$2,467,000 \mathrm{t}$	2,631,000 t	2,072,000 t
Status	2016	2017	2017	2018
Overfishing	No	n/a	No	n/a
Overfished	n/a	No	n/a	No
Approaching overfished	n/a	No	n/a	No

Summary of EBS pollock results
 Re-done w/ ABC=Tier 3

Quantity	As estimated or specified last year for:		As estimated or recommended this year for:	
	2018	2019	2019	2020
M (natural mortality rate, ages 3+)	0.3	0.3	0.3	0.3
Tier	$1{ }^{\text {a }}$	1 a	1 a	11
Projected total (age $3+$) biomass (t)	10,965,000 t	10,117,000 t	9,110,000 t	8,156,000 t
Projected female spawning biomass (t)	3,678,000 t	3,365,000 t	3,107,000 t	2,725,000 t
B_{0}	$5,394,000$ t	5,394,000 t	5,866,000 t	5,866,000 t
$B_{\text {msy }}$	2,042,000 t	2,042,000 t	2,280,000 t	2,280,000 t
Forl	0.621	0.621	0.645	0.645
$\max ^{\text {a }}$ ABC	0.466	0.466	0.51	0.51
$F_{A B C}$	0.336	0.336	0.356	0.356
OFL	4,797,000 t	4,592,000 t	3,914,000 t	3,082,000 t
$\max A B C$	$3,603,000$ t	3,448,000 t	3,096,000 t	2,437,000 t
$A B C$	2,592,000 t	2,467,000 t	2,163,000 t	1,792,000 t
Status	2016	2017	2017	2018
Overfishing	No	n/a	No	n/a
Overfished	n/a	No	n/a	No
Approaching overfished	n / a	No	n/a	No

Work plan

- Survey data treatment
- Joining acoustics with bottom trawl (funded proposal)
- Refining composition data treatment
- More AVO work
- New data collection methods
- Sea-floor mounted echo-sounders
- Genetics work
- For Bogoslof treatment

Global Climate Models (x 7)
ECHO-G
MIROC3.2 med res.
CGCM3-447
CCSM4-NCAR-PO
MIROCESM-C-PO
GFDL-ESM2M* PO
GFDL-ESM2M* PON
Projection Scena
AR4 A1B
AR5 RCP 4.5
AR5 RCP 8.5

Climate Enhanced Biological models (x $5+$
CE- single species assessment models
CE- multispecies model (CEATTLE)
CE - Size spectrum model
CE- Ecopath with Ecosim
End-to-End model (FEAST) habit

© NOAA

ACLIM

Alaska Climate Integrated Modeling Project
Anne Hollowed (AFSC, SSMA/REFM)
Kirstin Holsman (AFSC, REEM/REFM)
Alan Haynie (AFSC ESSR/REFM)
Stephen Kasperski (AFSC ESSR/REFM)
Jim lanelli (AFSC, SSMA/REFM)
Kerim Aydin (AFSC, REEM/REFM)
Trond Kristiansen (IMR, Norway)
AI Hermann (UW JISAO/PMEL)
Wei Cheng (UW JISAO/PMEL)
André Punt (UW SAFS)
Jonathan Reum (UW SAFS
Amanda Faig (UW SAFS)
FATE: Fisheries \& the Environment
SAAM: Stock Assessment Analytical Methods S\&T: Climate Regimes \& Ecosystem Productivity
Socio-economic / harvest scenarios (x $5+$)
No fishing
Status quo
By-catch changes
CE-reference points
MEY

The ACLIM Team

Anne Hollowed

Andre Punt

Jonathan Reum

Michael Dalton

Kirstin Holsman

Jim Ianelli

Andy Whitehouse

Alan Haynie

Stephen Kasperski

Darren Pilcher

Kerim Aydin

Amanda Faig

Cody Szuwalski

Albert Hermann

Kelly Kearney

Buck Stockhausen

Wei Cheng

Paul Spencer

Tom Wilderbuer

Jim Thorson

Ingrid Spies

Jeremy Sterling

Improve management foresight in a changing climate

Protect adaptive capacity in fish and fisheries

Project changes in Bering Sea ocean conditions and fish populations

 Physical, biological, \& socioeconomic change; now - 2100Evaluate how management can adapt to minimize negative impacts of future changes gradual change \& sudden shocks; test existing \& new tools; estimate risk

Marine heatwaves will likely

Duration

Marine heatwave analysis based on downscaled
ROMSNPZ hindcast + projections, and 1970-2000 climatology.

Summer Bottom Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$

Based on Hermann et al. in review

