Further considerations of Dynamic B_0 Jan 2018

James Ianelli

Motivation

- Poor estimates of stock-recruit relationships
- Clear suggestion of change in mean recruitment

Background

 "Dynamic Bzero" computation added to Gmacs and presented for SMBKC in Sept 2017

Previous studies and discussions

Aaron Berger, Ian Taylor, Z. Teresa A'mar and Melissa Haltuch

PFMC Productivity Workshop, December 6-8, 2016

- MacCall et al. 1985
- Field et al. 2010

Science Center

- Berger et al. 2013
- Many assessments grey literature...

Many examples

Vert pre et al. 2013 http://www.jstor.org/stable/41992117

Folke et al. 2004 (http://www.jstor.org/stable/30034127)

Scheffer and Carpenter 2003 (doi:10.1016/j.tree.2003.09.002)

Parma 2002 (Bulletin Marine Science 70(2))

Acknowledgement: Kevin Hill SWFSC

- Species and management context important
 - One size fits all approach unlikely
- Need to evaluate alternative harvest policies using dynamic approach (MSE)
- Static or equilibrium approach unsuitable ... where recruitment is largely dependent on environment

• ...

Spreadsheet simulations

W/ recruitment variability

Framp	F	$\triangle \mathbf{R}$	SigR
FALSE	0.3	1	0.6

 B / B0

 Static
 Dyn

 Mean
 37%
 35%

 CV
 14%
 8%

And some more...

Framp	F	$\triangle \mathbf{R}$	SigR
FALSE	0.3	1	0.9

B / B0Static **Dyn**48% 35%

_	Jtatio	
Mean	48%	35%
cv	34%	18%

Relative SSB after 22 years

Regime change...recruits down

Framp	F	$\triangle \mathbf{R}$	SigR
FALSE	0.3	0.5	0.6

B / B0

Static Dyn

Mean 19% 29%

CV 13% 9%

Regime change...recruits up

Framp	F	$\triangle \mathbf{R}$	SigR
FALSE	0.3	2	0.6

 B / B0

 Static
 Dyn

 Mean
 74%
 39%

 CV
 13%
 7%

2,800

2,400

8,000,000

6,000,000

Main controls

Framp	F	$\triangle \mathbf{R}$	SigR
TRUE	0.3	1	0.6

B / B0 Dyn **Static** Mean 51% 48% 12% 5% C\

SSB

Case for SMBKC

Data by type and year

Case for SMBKC Dyn B_0 time series

Take home / discussion

For SMBKC time series presentation confusing...

Distribution of recent year (or average over recent subset of years)
perhaps better

Avoids issue of period over which to average SSB

• I.e., for reference calculations used in crab

Provides focus on fishing impacts

 Rather than declines due to distribution shifts or other environmental effects

Requires fewer assumptions wrt relative SSB estimates

• But many of the same assumptions (M, estimated R, etc)

Perhaps considered as supplemental to status determination

Given some flexibility in MSA reauthorization?