Norton Sound Red King Crab
SAFE 2021

Sept 15 2022

Crab Plan Team: Seattle-Virtual

Toshihide “Hamachan” Hamazaki,
Alaska Department of Fish & Game
Division of Commercial Fisheries
3 issues to discuss

• Model selection for the Jan 2023 final assessment
• Estimate discards **WITHOUT data.**
• Length-independent vs. length-dependent OFL-ABC
Summer Com Catch and CPUE, and Trawl abundance
Fishery & Data Sept 2022

• ABC: 0.40 mil. lb. Total catch: 0.34 + 0.02 – 0.08? mil. lb depending on discards estimation method.

• NOAA 2022 NBS trawl survey: (Sept 07 2022)
 – 8/3,4,11,12 : 2,103,000 (CV: 0.368)
 – Not included in the draft SAFE, but adding data did not change model results (will update for Jan 2023).
NSRKC draft Assessment Models

• Model 21.0: 2022 final model with data update (without NOAA NB Trawl data)

• Model 22.0: Model 21.0 + shell specific retention probability
 – CPT: Oldshell crabs are more likely to be discarded

• Model 22.1: Model 21.0 + individual M estimate
 – SSC: May explain the lack of model fit to trawl and Com retain size-shell composition

• Model 22.2: Model 22.0 + individual M estimate
M, molting, selectivity, retention

Natural Mortality (M)

Molting Probability

Trawl selectivity

Winter pot Selectivity

Winter Com Retntion

Summer Com Sel

Retention 76-2007

Retention (oldshell) 76-2007

Retention 2008-2022

Retention (oldshell) 2008-2022

- **Natural Mortality (M)**
- **Molting Probability**
- **Trawl selectivity**
- **Winter pot Selectivity**
- **Winter Com Retntion**
- **Summer Com Sel**
- **Retention 76-2007**
- **Retention (oldshell) 76-2007**
- **Retention 2008-2022**
- **Retention (oldshell) 2008-2022**
NSRKC Final Assessment Models

<table>
<thead>
<tr>
<th>Model</th>
<th>21.0</th>
<th>22.0</th>
<th>22.1</th>
<th>22.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIC change</td>
<td>+6</td>
<td>+5.4</td>
<td>+24</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>347.9</td>
<td>346.1</td>
<td>342.6</td>
<td>341.1</td>
</tr>
<tr>
<td>Trawl Survey</td>
<td>11.0</td>
<td>10.8</td>
<td>10.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Discards</td>
<td>3.5</td>
<td>4.5</td>
<td>3.3</td>
<td>3.6</td>
</tr>
<tr>
<td>St.CPUE</td>
<td>-14.8</td>
<td>-14.9</td>
<td>-15.1</td>
<td>-15.0</td>
</tr>
<tr>
<td>Length-Shell prop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trawl</td>
<td>129.0</td>
<td>126.4</td>
<td>125.5</td>
<td>123.7</td>
</tr>
<tr>
<td>Winter pot</td>
<td>39.5</td>
<td>39.3</td>
<td>39.3</td>
<td>39.1</td>
</tr>
<tr>
<td>S. com retain</td>
<td>49.3</td>
<td>48.5</td>
<td>48.7</td>
<td>48.9</td>
</tr>
<tr>
<td>S. com total, discards</td>
<td>24.3</td>
<td>25.0</td>
<td>24.9</td>
<td>25.1</td>
</tr>
<tr>
<td>W. Com retain</td>
<td>2.7</td>
<td>2.9</td>
<td>2.5</td>
<td>2.7</td>
</tr>
<tr>
<td>Recruit</td>
<td>19.5</td>
<td>19.6</td>
<td>20.1</td>
<td>20.1</td>
</tr>
<tr>
<td>Tag recovery</td>
<td>83.9</td>
<td>83.9</td>
<td>82.9</td>
<td>83.4</td>
</tr>
<tr>
<td>Max grad (e-6)</td>
<td>4.9</td>
<td>2009</td>
<td>14.7</td>
<td>4.55</td>
</tr>
<tr>
<td>RMSE Trawl</td>
<td>0.34</td>
<td>0.34</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>RMSE CPUE</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
</tbody>
</table>
BMSY: 1982-2023
Mature: > 94mm CL
Lab data (2022)
Functional maturity > 75mm CL
Model results

• As expected, no surprises
• Lower oldshell retention prob (22.0)
• Size-dependent Increasing M (22.1)
 – Could be unrealistic....
• Little-no improvements in model fits
• Little-no change in model estimates: MMB, BMSY
Author Recommendation

• Model Parsimony vs Realism in the absence of clear winner

• Model 21.0
 – Retention probability clearly differed between newshell and oldshell, however, this did not improve model fit. (model parsimony).

• Model 22.0
 – Even though it did not improve model performance, shell-specific retention probabilities should be kept to be true to reality. (model realism)
Estimate discards **WITHOUT data.**

<table>
<thead>
<tr>
<th>Year</th>
<th>Discards data</th>
<th>OFL</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>No survey</td>
<td>Retained</td>
<td>No discards data = No total catch = Retained OFL</td>
</tr>
<tr>
<td>2016-2019</td>
<td>Oppotunistic observer survey</td>
<td></td>
<td>Develop an ad hoc method to estimate ad hoc discards</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flawed data are better than no data(?)</td>
</tr>
<tr>
<td>2020</td>
<td>ad hoc discards</td>
<td>Total</td>
<td>Discards data exist = total catch = Total OFL</td>
</tr>
<tr>
<td>2021-</td>
<td>No survey</td>
<td>Total</td>
<td>Total OFL = estimate discards WITHOUT data</td>
</tr>
</tbody>
</table>

Several *ad hoc* methods can be developed.

Scientific Criteria for selecting the BEST method estimating discards from opportunistic survey data?
Scientific Criteria for the BEST method estimating discards from NO data?
Estimate discards WITHOUT data.

• Author recommendation: Retained OFL-ABC
 – Observer survey: opportunistic, will not resume for foreseeable future
 – Consistent with available data
 – Scientifically Honest

• If CPT-SSC do keep Total OFL: Author requests
 – Scientific Criteria for selecting a method estimating discards from opportunistic survey data
 – Scientific Criteria for selecting a method estimating discards from NO data
Length-independent vs. length-dependent F_{OFL} for calculation of OFL

- **Length independent**
 - $F_{OFL} = \gamma M$ ($M = 0.18$)
 - $OFL = F_{OFL} \times B$ $B = \sum B_i$

- **Length dependent**
 - $F_{OFL,i} = \gamma M_i$ (M_i : model estimate)
 - $OFL = \sum F_{OFL,i} \times B_i$
Length-independent vs. length-dependent F_{OFL} for calculation of OFL

- **Author recommendation: length-dependent**
 - Consistent with model structure
 - Length-independent:
 - Appropriate when length-independent M (e.g. $M=0.18$) is preassigned.
 - May be in appropriate when length-dependent M is estimated (which M be used to set F_{OFL}?)
 - ABC buffer is the right place to deal with uncertainties about OFL.