GOA Rex Sole (update)
 Carey M cGilliard

antity	As estimated or specified last year for:		As estimated or recommended this year	
	ner:			

Area Apportionment

		West tity			Western
Central	Yakutat	Southeast	Total		
tionment	13.74%	63.57%	8.44%	14.25%	100.00%
ABC (t)	1,258	5,816	772	1,304	9,150
ABC (t)	1,234	5,707	758	1,280	8,979

Summary Information

Year	Biomass 1	OFL^{2}	ABC^{2}	TAC 2	Catch 3
2013	86,684	12,492	9,560	9,560	3,707
2014	84,702	12,207	9,341	9,341	3,474
2015	82,972	11,957	9,150		
2016	81,414	11,733	8,979		

M ore Summary Information

Area	2014				2015		2016	
	OFL 1	ABC^{1}	TAC^{1}	Catch 3	OFL 2	ABC^{2}	OFL 2	ABC^{2}
W	--	1,270	1,270	110	-	1,258	--	1,234
C	--	6,231	6,231	3,363	--	5,816	--	5,707
NYAK	--	813	813	1	--	772	--	758
SE	-	1,027	1,027	0	--	1,304	--	1,280
Total	12,207	9,341	9,341	3,474	11,957	9,150	11,733	8,979

Data Gaps and Research Priorities

M ove assessment to Stock Synthesis for further exploration Explore survey and fishery selectivity patterns
Estimate growth internally and based on more recent data, if possible Consider using ADF\&G small mesh survey data
Explore stock-recruit curves
Account for ageing error
Explore data weighting
Explore ways to better account for uncertainty (e.g. uncertainty in natural mortality and catchability)

GOA Deepwater Flatfish Complex (update)
 Carey M cGilliard

\left.			As estimated or	
specified last year for:				$\right]$
:---:				
recommended this year fo				

		As estimated or specified last year for: cies		As estimated or recommended this year for
	Quantity	2014	2015	

Area Apportionment

Quantity	Species	West				
		Western	Central	Yakutat	Southeast	Total
Area Apportionment	Dover sole	1.18\%	28.02\%	41.54\%	29.26\%	100.00\%
	Greenland turbot	81.17\%	0.00\%	6.40\%	12.43\%	100.00\%
	Deepsea sole	0.00\%	100.00\%	0.00\%	0.00\%	100.00\%
2015 ABC (t)	Dover sole	156	3,684	5,463	3,848	13,151
	Greenland turbot	145	0	11	22	179
	Deepsea sole	0	4	0	0	4
	Deepwater Flatfish	301	3,688	5,474	3,870	13,334
2016 ABC (t)	Dover sole	154	3,640	5,398	3,802	12,994
	Greenland turbot	145	0	11	22	179
	Deepsea sole	0	4	0	0	4
	Deepwater Flatfish	299	3,644	5,409	3,824 ${ }^{\prime \prime}$	13,177

Summary Information

Year	Biomass 1	OFL 2	ABC 2	TAC 2	Catch 3
2013	173,853	6,834	5,126	5,126	242
2014	182,727	16,159	13,472	13,472	338
2015	182,160	15,993	13,334		
2016	181,691	15,803	13,177		

M ore Summary Information

Area	2014				2015		2016	
	OFL ${ }^{1}$	$A B C^{1}$	TAC ${ }^{1}$	Catch ${ }^{3}$	OFL ${ }^{2}$	ABC^{2}	OFL ${ }^{2}$	ABC
W	--	302	302	67	--	301		299
C	--	3,727	3,727	262	--	3,688	--	3,64
VYAK	--	5,532	5,532	5	--	5,474	--	5,40
SE	--	3,911	3,911	4	--	3,870	--	3,82
Total	16,159	13,472	13,472	338		13,334		13,17

Responses to SSC and Plan Team Comments

Nov 2013: Explore random effects survey averaging approach for ortionment calculations. Will address this in 2015, including new surve

Nov. 2013/SSC, Dec 2013: Based on suggestions from the author, stigate catchability and natural mortality. Planned for 2015 full assess do a joint likelihood profile over catchability and natural mortality and sider estimation of one or both parameters using priors.

Nov. 2013/ SSC Dec 2013: Do a stock structure template. Will do this ii 5.

Nov. 2013: Pursue items listed for future research by author in 2013 ssment. See "Data Gaps and Research Priorities" on next slide

Data Gaps and Research Priorities

olore ways to better account for uncertainty (e.g. certainty in natural mortality and catchability)
velop an ageing error matrix for GOA Dover sole
olore adjusting effective sample sizes of survey length mposition data to number of hauls
olore potential causes of patterns in early recruitment viations estimated by some 2013 alternative models.

GOA Flathead Sole (update)
 Carey M cGilliard

Quantity	As estimated or specified last year for:		As estimated or recommended this year for:	
	2014	2015	2015*	2016*
M (natural mortality rate)	0.2	0.2	0.2	0.2
Tier	3a	3 a	3a	3a
Projected total (3+) biomass (t)	252,361	253,418	254,602	256,029
Female spawning biomass (t) Projected				
Upper 95\% confidence interval	84,076	83,287	83,900	83,606
Point estimate	84,058	83,204	83,818	83,342
Lower 95\% confidence interval	84,045	83,141	83,754	83,135
$B_{100 \%}$	88,829	88,829	88,829	88,829
$B_{40 \%}$	35,532	35,532	35,532	35,532
$B_{35 \%}$	31,090	31,090	31,090	31,090
$F_{\text {OFL }}$	0.61	0.61	0.61	0.61
$\operatorname{maxF}_{\text {ABC }}$	0.47	0.47	0.47	0.47
$F_{A B C}$	0.47	0.47	0.47	0.47
OFL (t)	50,664	50,376	50,792	50,818
$\operatorname{maxABC}(\mathrm{t})$	41,231	41,007	41,349	41,378
ABC (t)	41,231	41,007	41,349	41,378
Status	As determined in 2012 for:		As determined in 2013 for:	
	2011	2012	2012	2013
Overfishing	no	n/a	no	n/a
Overfished	n / a	no	n / a	no
Approaching overfished	n / a	no	n / a	no

Area Apportionment

West

tity
tionment
$\mathrm{ABC}(\mathrm{t})$
$\mathrm{ABC}(\mathrm{t})$

Western
30.88%
12,767
12,776
$\begin{array}{ll}60.16 \% & 8.55 \% \\ 24,876 & 3,535 \\ 24,893 & 3,538\end{array}$
Central Yakutat Southeast
T

30.88%	60.16%	8.55%	0.41%	100
12,767	24,876	3,535	171	41
12,776	24,893	3,538	171	41

Summary Information

ar	Biomass 1	OFL 2	ABC 2	TAC 2	Ca
13	236,745	61,036	48,738	30,496	2,
14	252,361	50,664	41,231	27,746	2,
15	254,602	50,792	41,349		
16	256,029	50,818	41,378		

M ore Summary Information

2014					2015		2016	
	OFL 1	ABC 1	TAC 1	Catch 3	OFL 2	ABC 2	OFL 2	A
--	12,730	8,650	202	--	12,767	-	12	
	--	24,805	15,400	2,114	-	24,876	--	22
--	3,525	3,525	1	--	3,535	--	3	
	--	171	171	0	--	171	--	
1	50,664	41,231	27,746	2,317	50,792	41,349	50,818	41

Responses to SSC and Plan Team Comments

Nov 2013: Explore natural mortality and catchability and effects on ctivity. Potentially use a prior on natural mortality based on max obser A joint likelihood profile over natural mortality and catchability is pla exploration of using a prior on natural mortality based on max observ will be considered for the 2015 assessment
, Nov 2013; SSC, Dec 2013: Develop a stock-specific ageing error matri ore extreme patterns in early recruitment deviations that occurred in s 3 models. Will do in 2015.

Data Gaps and Research Priorities

relop a stock-specific ageing error matrix
ust effective sample sizes of survey length frequencies to num rauls
lore natural mortality and catchability and methods for ounting for uncertainty in these parameters into the assessm lore potential causes of extreme early recruitment deviations t occurred in some models in 2013.
quest ageing of otoliths from fishery

End

Exploration of the early rec dev pattern (already done for Dover sole)

- not having as many early recruits and not having any early recruits and having even more early recruits
- including early recruits in the main rec dev vector
- length based asymptotic selectivity for survey 1
- dome-shaped selectivity for survey 1
- length-based asymptotic selectivity for the fishery
-Leaving out various years of age-comp data
- leaving out the influence of the length comps
- leaving out the influence of the age comps (eliminates the problem)
- leaving out the survey biomass years corresponding to a downward trend in biomass
- adding in the 1984 and 1987 comp data
- limiting the maximum value of rec devs (makes a much bigger red line loop/mismatch between observed and expected) for the survey 1 female age comps

GOA Bottom Trawl Survey

Longitude by Date

Also, 30 mi tows in 1 and 1987, more rec years: 15 tows

Francis (2011) Data Weighting Method

je:

ial: to investigate whether effective sample sizes of fishery length comps were reasonable relative to ef nple sizes of survey composition data
assign weights to composition data sources that account for the influence of intra-year correlations in If comps that are not explicitly modeled, to avoid preventing the model from fitting the biomass index w les of correlations not in the model: time-varying selectivity, time- and age-varying natura ity
ound:
igth and age comp data are often overdispersed relative to the variance assumed by the multinomial lik he model
Allister and lanelli (1997), Appendix 2: calculates weights to account for overdispersed data relative to he multinomial, ignores correlations
anington and Volstad (2004): Intra-haul correlation lowers effective sample size
E.g. fish of similar ages or lengths are often caught together in a haul

The precision of the mean lengths or ages based on a sample of fish from marine surveys is much lower relative to the p the mean length or age based on a random sample of the population
Precision for some marine surveys is close to the number of hauls, not number of fish ncis (2011):
Same concept as for Pennington and Volstad, (measuring precision of means), except applied to intra-year correlations, r intra-haul correlations
Same idea as McAllister and Ianelli, but accounts for correlations by comparing variation in mean lengths or ages relative expected means by year (where means are assumed to be normally distributed)
ial alternative: explicitly model time-varying effects that influence proportions at length a residuals are not as correlated

Potential Future Work (Dover sole)

Estimate an ageing error matrix specific to AFSC samples of GOA Dove sole
Further exploration of potential causes of patterns in early recruitmer deviations
Continued consideration of removing 1984, 1987 survey biomass data Explore catchability and natural mortality within the model Number of hauls, other approaches to relative weighting within each source of composition data
Explore whether time-varying and spatially-varying growth is occurrin and potential influence on assessment model
Alternative approaches to accounting for ontogenetic movement
Collection and analysis of additional maturity data for GOA Dover sole

Rex Sole Calculations

OFL =Fofl*Adult_biomass
ABC $=$ Fabc*Adult_biomass
Fofl $=\mathrm{M}$
Fabc $=0.75 * \mathrm{M}$

Adult biomass(2011) is summed total_biomass-at-age * maturity_at_age from the 2011 assessment (the most rēcent one)

Adult biomass $(t+1)=(1-\exp (-Z)) / Z *$ Adult_biomass (t) (used in update years)

