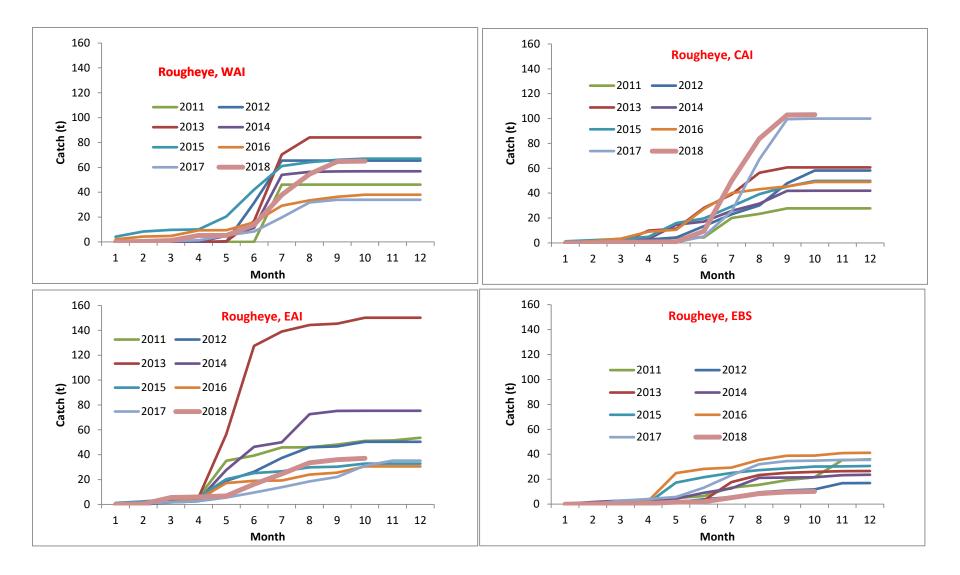


NOAA FISHERIES

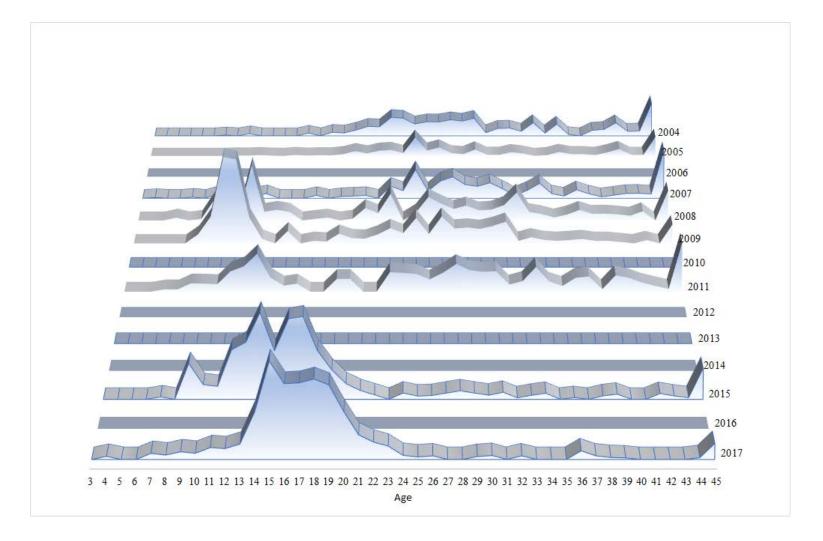
2018 BSAI Blackspotted/Rougheye Rockfish Assessment

Paul Spencer, Jim Ianelli, and Wayne Palsson

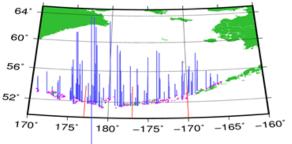

Alaska Fisheries Science Center

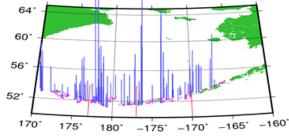
Outline

1) Catch information 2) Survey and fishery data 3) Model evaluation 4) Retrospective analysis 5) Model fits to data 6) Monitoring of catch 7) Management recommendations



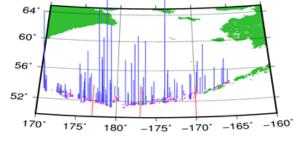
BSAI Blackspotted/Rougheye catch by month and area, 2011-2018


BSAI blackspotted/rougheye fishery age composition data

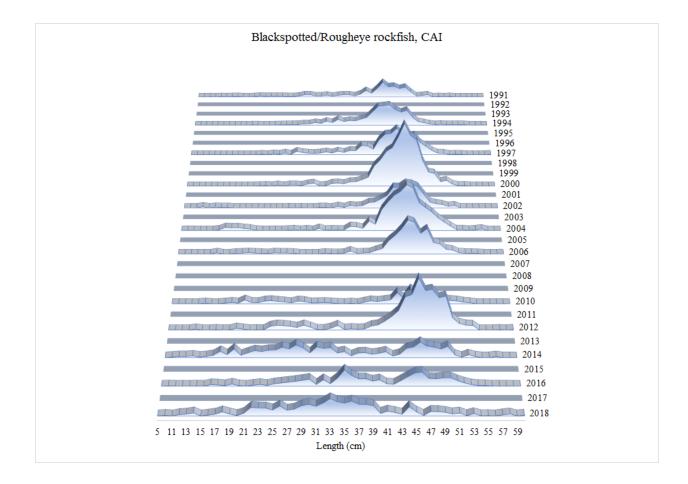


Al survey CPUE, 2014 – 2018 Al surveys

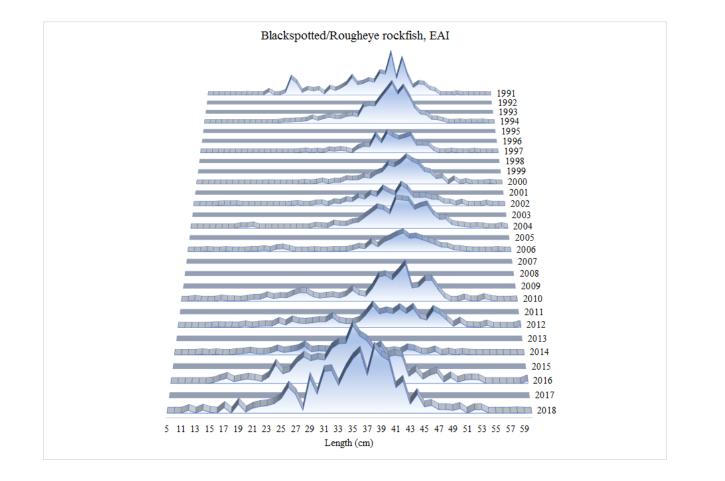
2014 AI Survey Blackspotted/Rougheye Rockfish CPUE (scaled wgt/km²)


2016 AI Survey Blackspotted/Rougheye Rockfish CPUE (scaled wgt/km²)

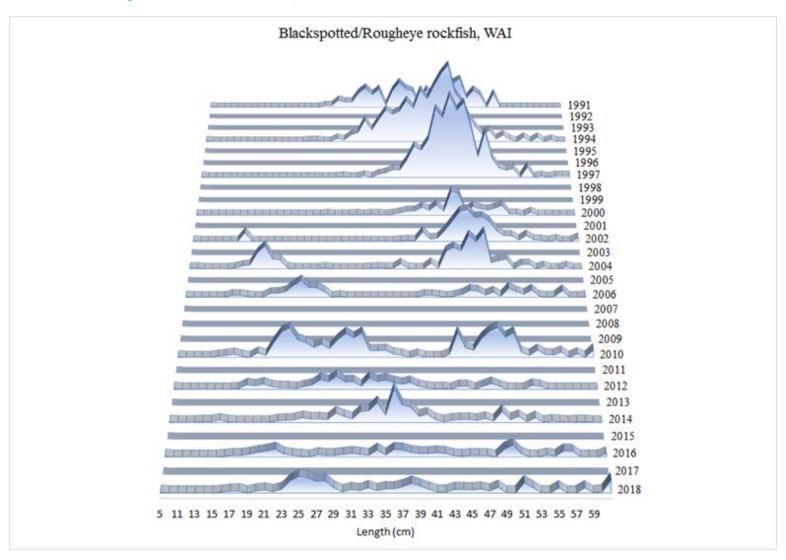
Survey biomass estimates and CVs


Year	Western	Central	Eastern	southern BS	Total AI survey
2014	589 (0.28)	2,878 (0.27)	958 (0.30)	311 (0.20)	4,736 (0.18)
2016	501 (0.34)	2,803 (0.35)	6,165 (0.37)	600 (0.35)	10,069 (0.25)
2018	632 (0.34)	2,438 (0.36)	6,535 (0.68)	328 (0.27)	9,843 (0.46)

2018 AI Survey Blackspotted/Rougheye Rockfish CPUE (scaled wgt/km²)

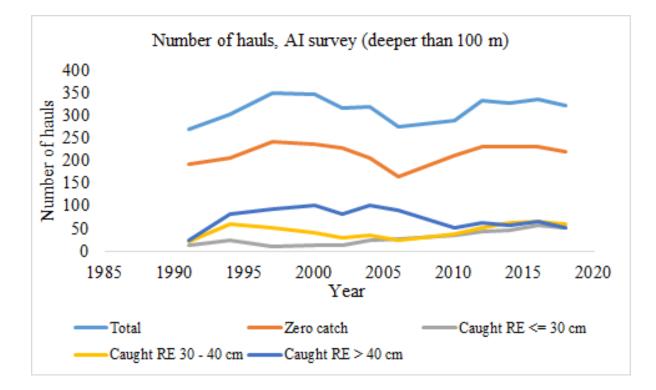


Survey size compositions, CAI

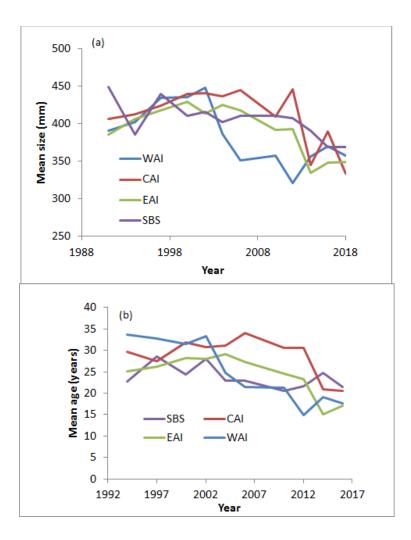


Survey size compositions, EAI

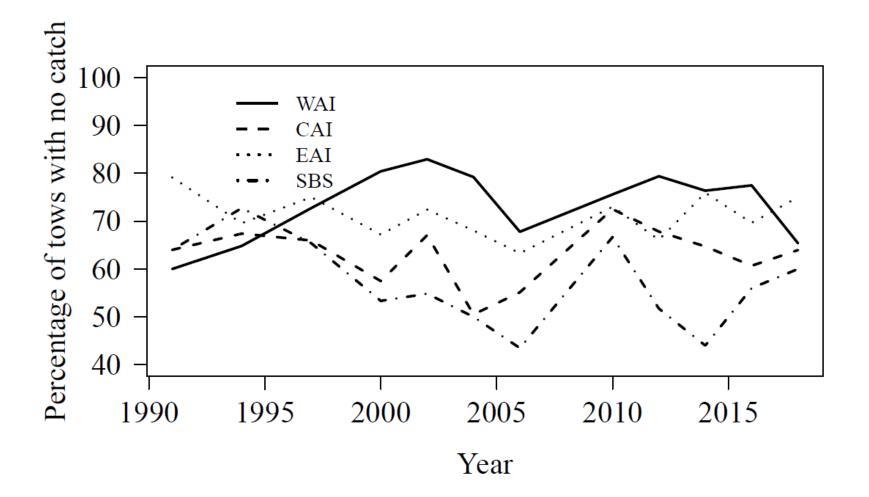
Survey size compositions, WAI



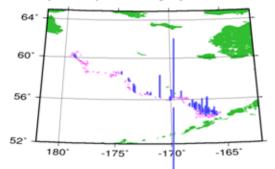
Al Survey age composition

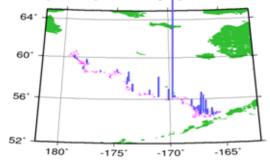


Occurrence in Al hauls, by size group

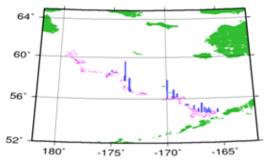


Mean size and age in the AI survey


Percentage of tows with no catch



2010 – 2016 EBS surveys

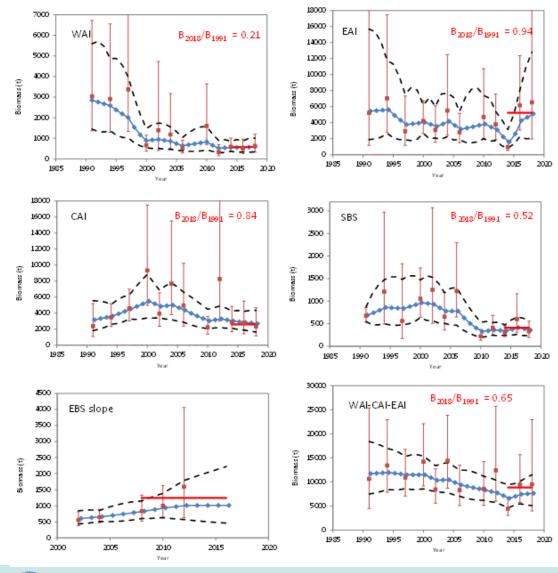

2010 EBS Survey Blackspotted/Rougheye Rockfish CPUE (wgt/km²)

2012 EBS Survey Blackspotted/Rougheye Rockfish CPUE (wgt/km²)

2016 EBS Survey Blackspotted/Rougheye Rockfish CPUE (wgt/km²)

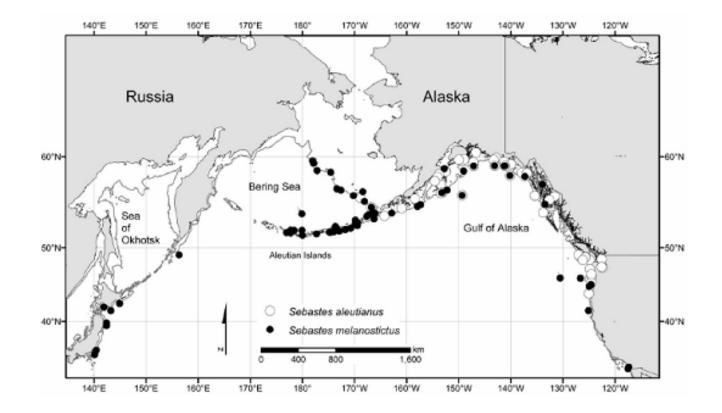
EBS survey biomass estimates and CVs

Year	EBS slope survey
2002	553 (0.20)
2004	646 (0.16)
2008	829 (0.24)
2010	999 (0.25)
2012	1,594 (0.51)
2016	458 (0.27)



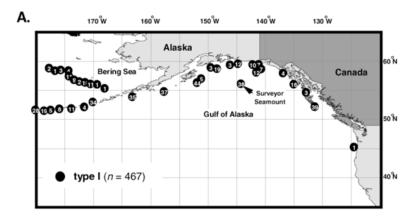
EBS survey age composition data

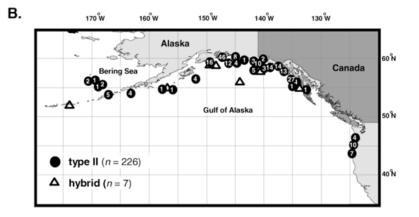
Smoothed survey biomass estimates


NOAA FISHERIES

Model evaluation

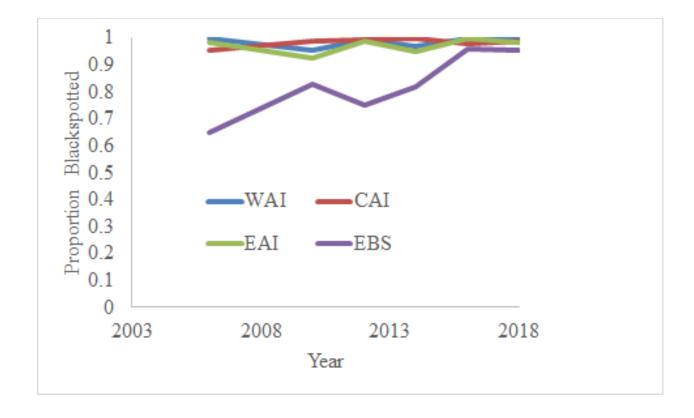
- Are the rougheye complexes in the EBS and Al sufficiently similar to each other (i.e., population dynamics, species composition) to warrant a single BSAI model?
- Is the age-structured model adequate (particularly the fit to the AI survey biomass time series)?


Spatial distribution of blackspotted and rougheye rockfish in the BSAI



(Orr and Hawkins, 2008)

Spatial distribution of blackspotted and rougheye rockfish in the BSAI



(Gharrett et al., 2005)

Al trawl survey data indicate that rougheye rockfish are uncommon in the Al subarea

Spatial distribution of blackspotted and rougheye rockfish in the BSAI

- An Aleutian Islands age-structured model is essentially a single-species model.
- A BSAI age-structured model is applied to twospecies, which could increase uncertainty if recruitment strengths, stock productivity, etc. differ between the species.

Inferring the ratio of the catchabilities for the EBS and AI surveys is complicated

- In the current AI-only model for blackspotted/rougheye rockfish, the area of the AI survey matches the area of the modeled stock
- With a BSAI model, some portion of the modeled stock would not be "available" to the AI survey
- The "availability" of the stock was modeled from the relative proportions of smoothed estimates of survey biomass

Modification to survey catchability

Old approach (2014 assessment)

$$S_{a,t} = qB_{a,t}$$

New approach

$$S_{a,t} = p_{AI,t} q B_{a,t}$$

 $B_{a,t}$ = modeled biomass at age *a* in year *t* (after adjusting for survey selectivity).

 $S_{a,t}$ = Predicted AI survey biomass at age *a* and year *t*.

q = survey catchability

 p_{AI} = proportion of stock in the AI area (based on nominal survey biomass estimates as measure of true biomass)

Inferring the ratio of the catchabilities for the EBS and AI surveys is complicated

• Confounding of true abundance with survey design and gear (Table below from 2017 flatfish CIE review)

Survey	Survey Design	Depths (m)	Vessels	Sampling Density man (krithaul)	Towing Duration (min)	Towing Speed (knots)	Towing Dynamics	TrawiNet	Doors	Door Connection	Footrope
EBS SLOPE	Ran do m stratified	200-1200	1	20.0	30	2.5	Dynamic mode	Poly Nor' Eastern	6 x 9 v 22 00 lbe	4-point	mud eveep gear-8" disce
EB5 SHELF	Fixed stations	20-197	2	1300	30	3	Brakeslocked	83-112 Eastern	6 x9 v1800 lbs	2-point	Fiber core wire wrapped with rubber the hose
EBS NORTHERN	Fixed stations	20-100	2	1410	30	3	Brakeslocked	83-112 Eastern	6 x9 v1800 lbs	2-point	Fiber core wire wrapped with rubber the hose
ALEUTIAN ISLAND 5	Ran do m stratified	20-500	2	157	15	3	Dynamic mode	Roly Nor' Eastern	6 x9 v1800 lbs	2-point	Bobbins and Roller Gear
GULF OF ALASKA	Random stratified	20-1000	3	560	15	3	Dynamic mode	Roly Nor' Eastern	6 x9 v1800 lbs	2-point	Bobbins and Roller Gear

Inferring the ratio of the catchabilities for the EBS and AI surveys is complicated

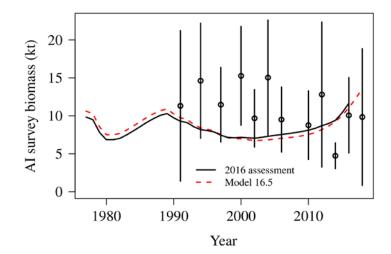
Catchability (q) is often simply treated as a scaling parameter to fit data. As such, given the only information on M is also in the survey data, q is aliased with M. If all q's were estimated given a fixed M, then a good <u>starting place</u> for fitting may well be the proportions of biomass estimated in each survey. However, assuming well-behaved models and likelihood surfaces, final estimated q's might well be very different. Given the surveys cover different portions of the stock(s) at different life history stages, and all have different gear and operational attributes (see table below copied from Ref 10, slide 5), there is no a priori reason to expect relative stock distributions to be reflected directly by the surveys.

Kevin Stokes, 2017 flatfish CIE review

There may be uncertainty in our estimates of q, but with a single-area model at least we do not have to worry about the areal availability

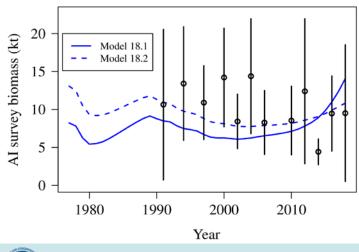
Models evaluated (AI and BSAI models)

- *Model 16.5* From 2016 assessment, updated data and iterative reweighting with McAllister-Ianelli method
- *Model 18.1* Al model, updated data and iterative reweighting with McAllister-Ianelli method
- *Model 18.2* AI, iterative reweighting with Francis method

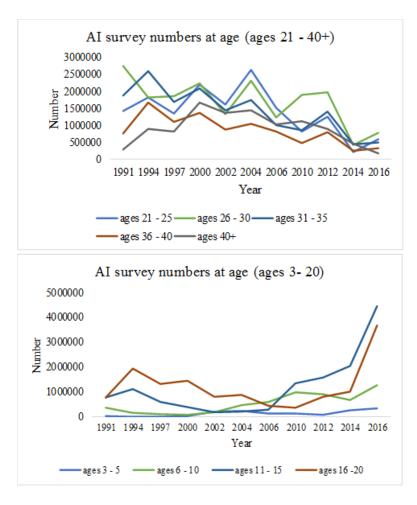


Data in assessment model

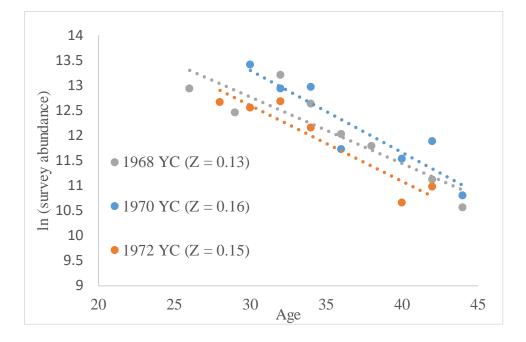
Component	Years			
Fishery catch	1977- 2018			
Fishery age composition	2004-2005, 2007-2009, 2011, 2015, 2017			
Fishery size composition	1979, 1990, 1992-1993, 2003, 2010, 2012-2014, 2016			
AI Survey age composition	1991, 1994, 1997, 2000, 2002, 2004, 2006, 2010, 2012, 2014, 2016			
AI Survey length composition	2018			
AI Survey biomass estimates	1991, 1994, 1997, 2000, 2002, 2004, 2006, 2010, 2012, 2014, 2016, 2018			



Fits to AI survey biomass


The models are not fitting the AI survey biomass very well, and this is not improved by adding EBS data to the model

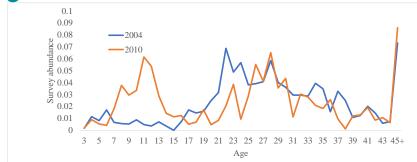
What is it about the composition data that suggests that the stock is increasing, whereas the survey biomass data suggests it is decreasing?



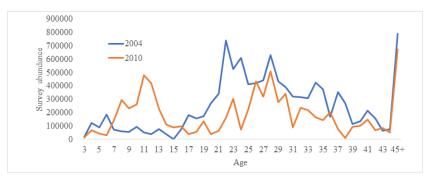
Decline over time of older fish in Al survey

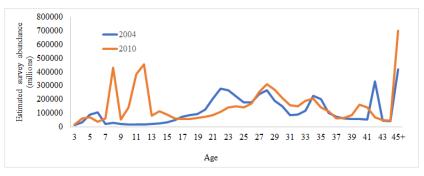
Catch curves from AI survey

AA FISHERIES


Potential sources of mortality:

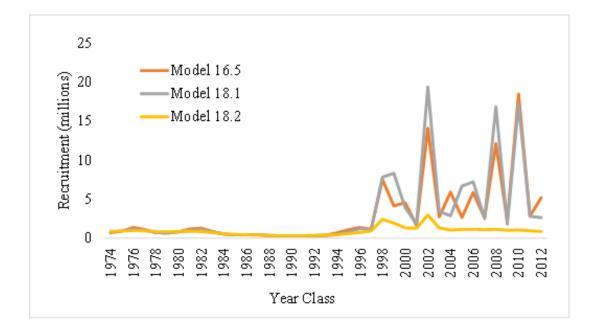
Fishing, but only if the survey catchability is really high (i.e., population is low).


Natural Mortality (but only if *M* is much higher than expected, and inconsistent with the observed maximum ages).


M and *q* are locked down in this model with pretty tight priors, so the model cannot change mortality that much. The only thing the model can do to match the composition data is ramp up recruitment.

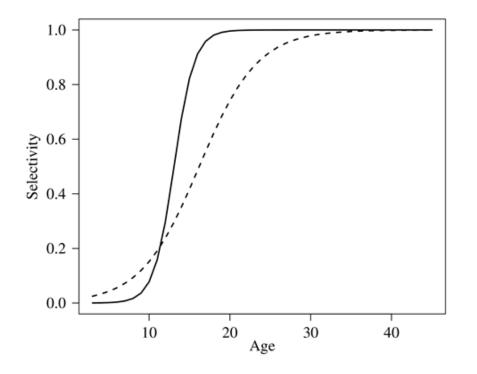
Al survey estimated abundance at age, 2004 and 2010

Proportions that the model is attempting to fit

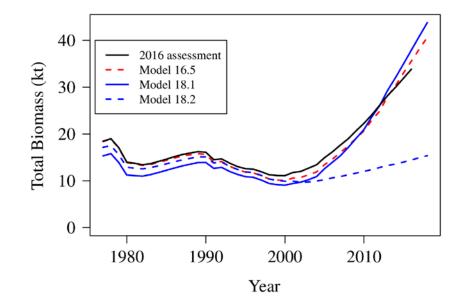


NOAA FISHERIES

Numbers at age from the survey.


Modeled survey numbers at age, Model 18.1. Does not match the mortality for older fish.

Estimated recruitment strengths (age 3)

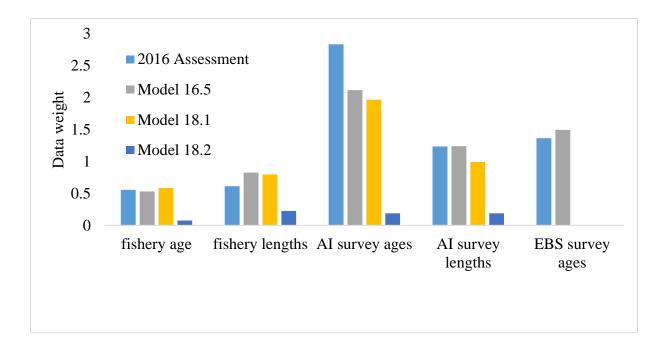

Estimated Selectivity

Survey – solid line Fishery – dashed line

Estimated total biomass

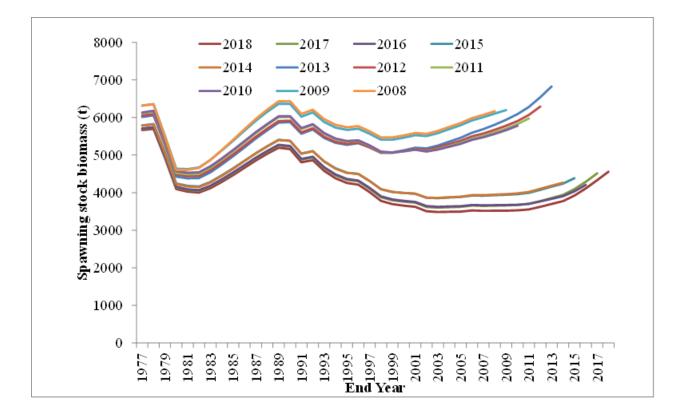
Model 18.2 is the preferred model

Models that do not downweight the age and length composition data suggest the total biomass is ~ 3- 4 times the current survey biomass, and composed mostly of young fish partially selected by the survey.

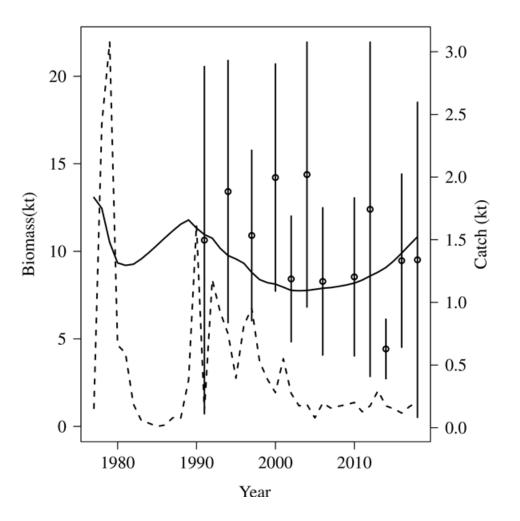

With the new survey biomass estimates and composition data, this seems increasingly implausible.

The uncertainty in the recruitment estimates was noted in 2016. Downweighting of the composition data was not selected because the fit to the biomass index was still poor.

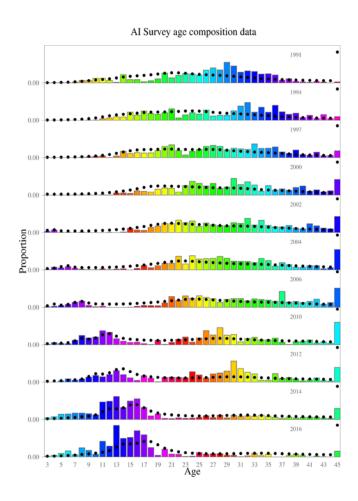
Downweighting the composition data does not explain the mortality of older fish, but does avoid the problem of ramping up recruitment to explain the comp data.



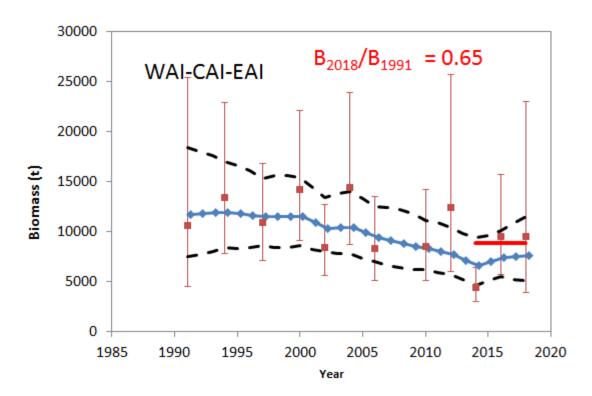
Data weights


Retrospective pattern

Still bad, but hinges on 2014 data point.



Catch time series, and fit to AI survey


Fit to AI survey age comps

Overestimation of the plus group

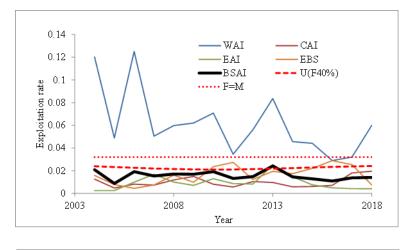
What about Tier 5 for the AI?

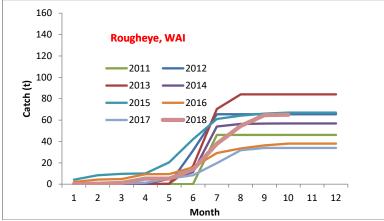
Might be considered because the Tier 3 model does not fit either the survey or the composition data very well.

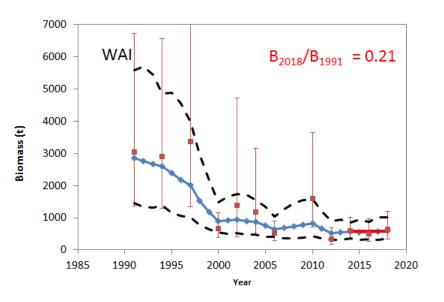
2019 ABC, Tier 5	183 t
2019 ABC, Tier 3	314 t

Changes in Observer sampling

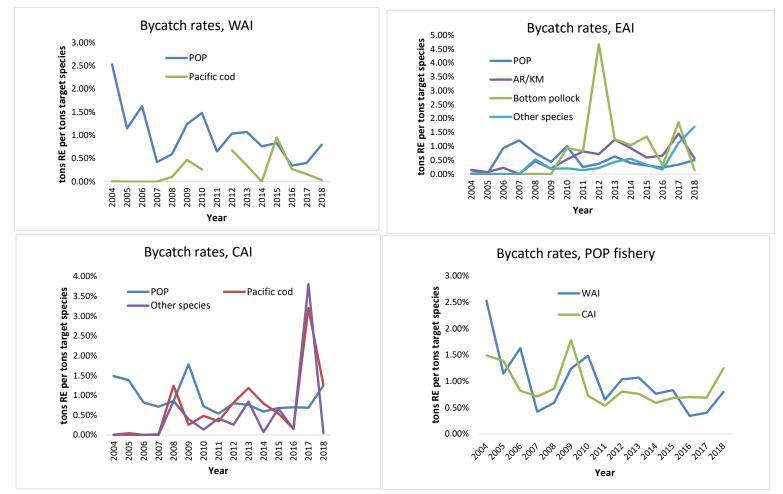
Predominant Species	Sex/Length Data	Biological Data (All specimen fish must have an associated s/l/w specimen)	Halibut Condition	
Bering Sea Flatfish *Every Sampled Haul ~ 16 of the most predominant species in the list, chosen by rank in cases of equal predominanceSpecies Ranking List.1. Yellowfin Sole 		Every 5th Sampled Haul 4 otolith pairs from the ~16 flatfish s/l fish. If yellowfin sole is the predominant species, collect 2 otolith pairs and 1 otolith pair from the ~ 4 flatfish s/l fish	Every 2nd Sampled Haul ~ 10 Viability or Injury Assessments	
Bering Sea Pollock	Every Sampled Haul ~ 20 pollock and ~ 20 squid (unsexed)	Every 5th Sampled Haul 2 pollock otolith pairs with maturity scan for all female otolith fish and ~ 8 pollock sex/length/weight specimens (must not be from an otolith fish)	CV: Every Sampled Haul CP: Every 2nd Sampled Haul ~10 Viability Assessments	


Collect 5 rougheye lengths and 3 otolith pairs in hauls with rougheye. Collect 5 great/plain sculpin lengths in hauls without rougheye.

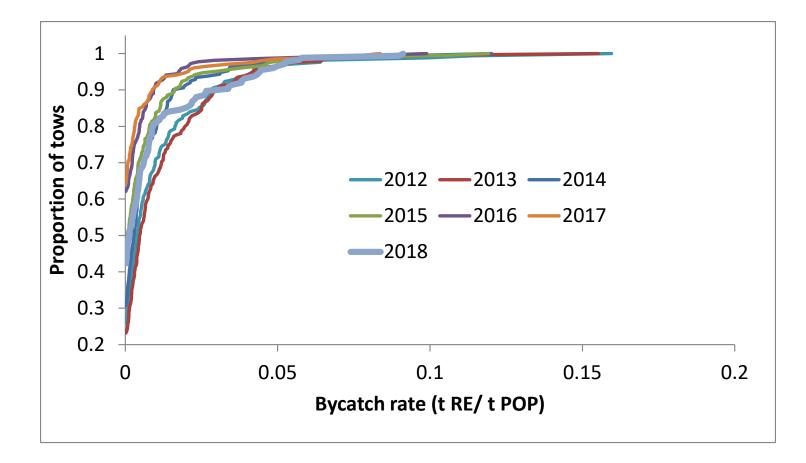

Collect 5 rougheye lengths and otolith pairs from hauls with rougheye rockfish.


Monitoring of WAI catch relative to MSSC

Requested by SSC (Oct 2016, Dec 2016)

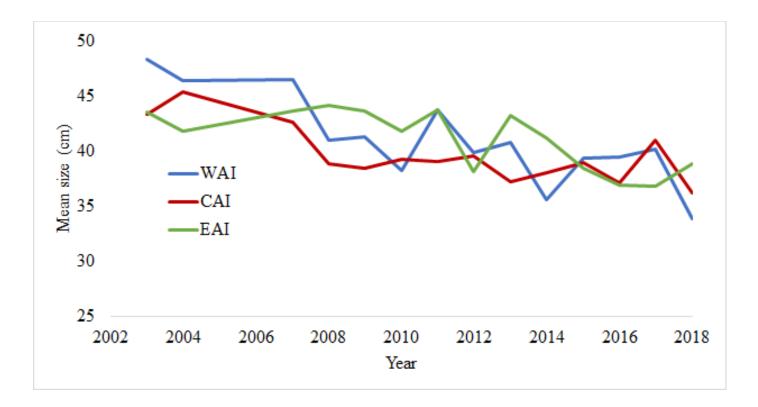


 Year	WAI MSSC	WAI Catch	Catch/MSSC
2015	46	67	1.46
2016	58	38	0.65
2017	29	34	1.17
 2018	35	65	1.86



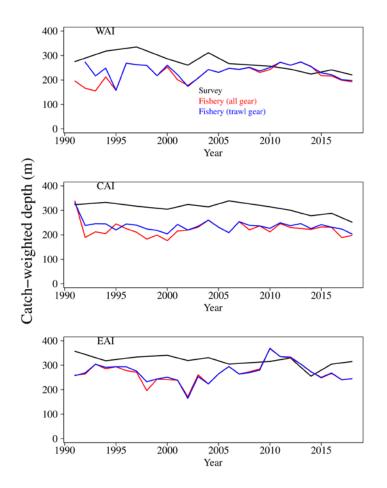
BSAI Blackspotted/Rougheye bycatch rates by target fishery and area, 2004-2018

Distributions of bycatch rates in the POP fishery in the WAI area, 2012-2018



Anything different about tows with high bycatch rates?

Bycatch rate	Number of tows	Mean depth
top 20%	36	227
positive, not top 20%	66	222
0	73	204



Mean size of fishery catches

Depth of capture, fishery and survey

In recent years, depth of capture has been similar in the WAI between the fishery and survey (~ 200 m).

The survey depth of capture has decreased over time in the WAI and CAI, likely related to lack of older fish.

Tier 3 vs Tier 5

Jim I: "Are those our only choices?"

Tier 5

Simpler, fits the survey time series better.

More conservative, which may be appropriate given any concern about loss of older fish.

Tier 3

We do not usually drop down from Tier 3 to 5, and this case may not be drastic enough to consider this.

There may be a disincentive to read otoliths in the future for a Tier 5 stock. Even if the model cannot explain the age composition data very well, continuing the age readings does add information on the dynamics.

We might get more informative data/models in the future, and we probably do not want to be switching back and forth between Tier 3 and Tier 5.

Recommendation of Tier 5 over Tier 3 is based more on "institutional" considerations than superior model performance.

Harvest spec table, AI subarea

	As estin	nated or	As estimated or	
	specified last year for:		recommended this year for:	
Quantity	2018	2019	2019^{*}	2020^{*}
M (natural mortality rate)	0.033	0.033	0.032	0.032
Tier	3b	3a	3b	3b
Projected total (age 3+) biomass (t)	37,453	39,169	15,647	16,002
Female spawning biomass (t)				
Projected	8,208	9,163	4,736	4,962
$B_{100\%}$	20,777	20,777	13,767	13,767
$B_{40\%}$	8,311	8,311	5,507	5,507
B35%	7,272	7,272	4,818	4,818
Fofl	0.054	0.055	0.029	0.030
$maxF_{ABC}$	0.044	0.045	0.024	0.025
FABC	0.044	0.045	0.024	0.025
OFL (t)	749	829	373	404
maxABC (t)	613	678	314	341
ABC (t)	613	678	314	341
	As determined <i>last</i> year for:		As determined	this year for:
Status	2016	2017	2017	2018
Overfishing	No	n/a	No	n/a
Overfished	n/a	No	n/a	No
Approaching overfished	n/a	No	n/a	No

Harvest spec table, EBS subarea

	As estimated or		
	<i>recommended</i> this year for:		
Quantity	2019	2020	
M (natural mortality rate)	0.032	0.032	
Tier	5	5	
Biomass (t)	1371	1371	
Fofl	0.032	0.032	
$maxF_{ABC}$	0.024	0.024	
F_{ABC}	0.024	0.024	
OFL (t)	44	44	
maxABC (t)	33	33	
ABC (t)	33	33	
	As determined <i>this</i> year for:		
Status	2018 2019		
Overfishing	No n/a		

Subarea allocations

Smoothed biomass estimates similar to those obtained in the 2016 assessment

			Area		
	WAI	CAI	EAI	SBS	EBS slope
Smoothed biomass	595	2,691	5,114	361	1,010
percentage (within AI subarea)	7.1%	32.0%	60.9%		

In recent years the subarea ABC for the western and central Aleutians Islands has partitioned into "maximum subarea species catch" in order to guide voluntary efforts from the fishing fleet to reduce harvest in the WAI.

	Area				
	WAI	CAI	WAI/CAI	EAI/EBS	Total
	MSSC	MSSC	ABC	ABC	ABC
2019 ABCs-MSSCs	22	101	123	224	347
2020 ABCs-MSSCs	24	109	133	241	374

Conclusions

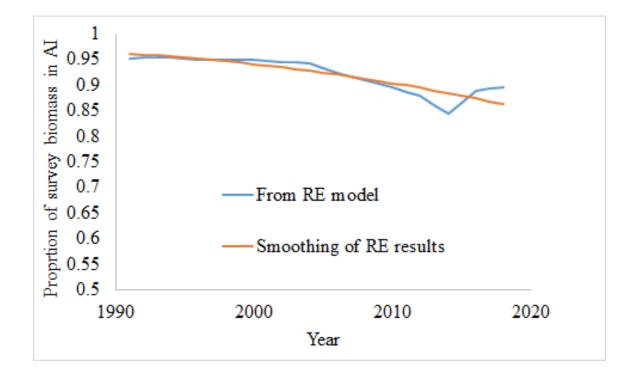
- Recommend applying a single-species age structured model to blackspotted rockfish in the AI subarea.
- New survey data suggest mortality on older fish is higher than previously estimated.
- Survey abundance in the western AI continues to be low, with high exploitation rates.

Methods for re-weighting composition data (from Francis 2011)

General approach is that the "second stage" sample sizes ($N_{j,y}$) are the product of a "first stage" sample sizes ($\widetilde{N}_{j,y}$) and a weight $N_{j,y} = w_j \widetilde{N}_{j,y}$

A single weight for each data type (*j*) The weights are updated with each model run, and iterated until they converge

Methods of data weighting


Inverse of residual variance (method TA1.2 in Francis 2011) Weight by the inverse of the variance of the standardized residuals

McAllister-Ianelli (method TA1.1 in Francis 2011) Weight by the harmonic mean of the ratios of effective sample size to the stage 1 sample size

"The Francis method" (method TA1.8 in Francis 2011) Weight by the inverse of the variance of standardized residual between the means of observed and predicted ages (or lengths). One data point per year.

Time series of relative proportion of BSAI survey biomass in AI subarea

